We consider 3-regular planar matchstick graphs, i. e. those which have a planar embedding such that all edge lengths are equal, with given girth g. For girth 3 it is known that such graphs exist if and only if the number of vertices n is an even integer larger or equal to 8. Here we prove that such graphs exist for girth g = 4 if and only if n is even and at least 20. We provide an example for girth g = 5 consisting of 180 vertices.

3-regular matchstick graphs with given girth

Mazzuoccolo, Giuseppe
2009-01-01

Abstract

We consider 3-regular planar matchstick graphs, i. e. those which have a planar embedding such that all edge lengths are equal, with given girth g. For girth 3 it is known that such graphs exist if and only if the number of vertices n is an even integer larger or equal to 8. Here we prove that such graphs exist for girth g = 4 if and only if n is even and at least 20. We provide an example for girth g = 5 consisting of 180 vertices.
2009
matchstick graph, cubic graph, planar graph, girth
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/927858
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact