We study an eigenvalue problem in the framework of double phase variational integrals and we introduce a sequence of nonlinear eigenvalues by a minimax procedure. We establish a continuity result for the nonlinear eigenvalues with respect to the variations of the phases. Furthermore, we investigate the growth rate of this sequence and get a Weyl type law consistent with the classical law for the p-Laplacian operator when the two phases agree.

Eigenvalues for double phase variational integrals

SQUASSINA, Marco
In corso di stampa

Abstract

We study an eigenvalue problem in the framework of double phase variational integrals and we introduce a sequence of nonlinear eigenvalues by a minimax procedure. We establish a continuity result for the nonlinear eigenvalues with respect to the variations of the phases. Furthermore, we investigate the growth rate of this sequence and get a Weyl type law consistent with the classical law for the p-Laplacian operator when the two phases agree.
In corso di stampa
quasilinear eigenvalue problems, double phase problems
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/927594
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact