We present a new Curry-Howard correspondence for classical first-order natural deduction. We add to the lambda calculus an operator which represents, from the viewpoint of programming, a mechanism for raising and catching multiple exceptions, and from the viewpoint of logic, the excluded middle over arbitrary prenex formulas. The machinery will allow to extend the idea of learning – originally developed in Arithmetic – to pure logic. We prove that our typed calculus is strongly normalizing and show that proof terms for simply existential statements reduce to a list of individual terms forming a Herbrand disjunction. A by-product of our approach is a natural-deduction proof and a computational interpretation of Herbrand’s Theorem.
On natural deduction in classical first-order logic: Curry-Howard correspondence, strong normalization and Herbrand's theorem
ZORZI, Margherita
2016-01-01
Abstract
We present a new Curry-Howard correspondence for classical first-order natural deduction. We add to the lambda calculus an operator which represents, from the viewpoint of programming, a mechanism for raising and catching multiple exceptions, and from the viewpoint of logic, the excluded middle over arbitrary prenex formulas. The machinery will allow to extend the idea of learning – originally developed in Arithmetic – to pure logic. We prove that our typed calculus is strongly normalizing and show that proof terms for simply existential statements reduce to a list of individual terms forming a Herbrand disjunction. A by-product of our approach is a natural-deduction proof and a computational interpretation of Herbrand’s Theorem.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.