By virtue of barrier arguments we prove C^\alpha-regularity up to the boundary for the weak solutions of a non-local nonlinear problem driven by the fractional p-Laplacian operator. The equation is boundedly inhomogeneous and the boundary conditions are of Dirichlet type. We employ different methods according to the singular (p < 2) of degenerate (p> 2) case.

Global Holder regularity for the fractional p-Laplacian

IANNIZZOTTO, ANTONIO;MOSCONI, SUNRA JOHANNES NICOLAJ;SQUASSINA, Marco
In corso di stampa

Abstract

By virtue of barrier arguments we prove C^\alpha-regularity up to the boundary for the weak solutions of a non-local nonlinear problem driven by the fractional p-Laplacian operator. The equation is boundedly inhomogeneous and the boundary conditions are of Dirichlet type. We employ different methods according to the singular (p < 2) of degenerate (p> 2) case.
In corso di stampa
Fractional p-Laplacian, fractional Sobolev spaces, global Holder regularity
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/926907
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact