Neuronal responses to Ca(2+)-signals are provided by EF-hand-type neuronal Ca(2+)-sensor (NCS) proteins, which have similar core domains containing Ca(2+)-binding and target-recognizing sites. But NCS proteins vary in functional specificity probably depending on the structure and conformation of their non-conserved C-terminal segments. Here, we investigated the role of the C-terminal segment in guanylate cyclase activating protein-2, GCAP2, an NCS protein controlling the Ca(2+)-dependent regulation of photoreceptor guanylate cyclases. We obtained two chimeric proteins by exchanging C-terminal segments between GCAP2 and its photoreceptor homolog recoverin, a Ca(2+)-sensor controlling rhodopsin kinase (RK) activity. The exchange affected neither the structural integrity of GCAP2 and recoverin nor the Ca(2+)-sensitivity of GCAP2. Intrinsic fluorescence, circular dichroism, biochemical studies and hydrophobic dye probing revealed Ca(2+)-dependent conformational transition of the C-terminal segment of GCAP2 occurring in the molecular environment of both proteins. In Ca(2+)-GCAP2, the C-terminal segment was constrained and its replacement provided the protein with approximately two-fold inhibitory activity towards RK, suggesting that the segment contributes to specific target recognition by interfering with RK-binding. Upon Ca(2+)-release, it became less constrained and more available for phosphorylation by cyclic nucleotide-dependent protein kinase. The transition from the Ca(2+)-bound to the apo-state exposed hydrophobic sites in GCAP2, and was associated with its activating function without affecting its dimerization. The released C-terminal segment participated further in photoreceptor membrane binding making it sensitive to phosphorylation. Thus, the C-terminal segment in GCAP2 confers target selectivity, facilitates membrane binding and provides sensitivity of the membrane localization of the protein to phosphorylation by signaling kinases.

Regulatory function of the C-terminal segment of guanylate cyclase-activating protein 2

DELL'ORCO, Daniele;
2015-01-01

Abstract

Neuronal responses to Ca(2+)-signals are provided by EF-hand-type neuronal Ca(2+)-sensor (NCS) proteins, which have similar core domains containing Ca(2+)-binding and target-recognizing sites. But NCS proteins vary in functional specificity probably depending on the structure and conformation of their non-conserved C-terminal segments. Here, we investigated the role of the C-terminal segment in guanylate cyclase activating protein-2, GCAP2, an NCS protein controlling the Ca(2+)-dependent regulation of photoreceptor guanylate cyclases. We obtained two chimeric proteins by exchanging C-terminal segments between GCAP2 and its photoreceptor homolog recoverin, a Ca(2+)-sensor controlling rhodopsin kinase (RK) activity. The exchange affected neither the structural integrity of GCAP2 and recoverin nor the Ca(2+)-sensitivity of GCAP2. Intrinsic fluorescence, circular dichroism, biochemical studies and hydrophobic dye probing revealed Ca(2+)-dependent conformational transition of the C-terminal segment of GCAP2 occurring in the molecular environment of both proteins. In Ca(2+)-GCAP2, the C-terminal segment was constrained and its replacement provided the protein with approximately two-fold inhibitory activity towards RK, suggesting that the segment contributes to specific target recognition by interfering with RK-binding. Upon Ca(2+)-release, it became less constrained and more available for phosphorylation by cyclic nucleotide-dependent protein kinase. The transition from the Ca(2+)-bound to the apo-state exposed hydrophobic sites in GCAP2, and was associated with its activating function without affecting its dimerization. The released C-terminal segment participated further in photoreceptor membrane binding making it sensitive to phosphorylation. Thus, the C-terminal segment in GCAP2 confers target selectivity, facilitates membrane binding and provides sensitivity of the membrane localization of the protein to phosphorylation by signaling kinases.
2015
Guanylate cyclase-activating protein 2 (GCAP2); Neuronal calcium sensor (NCS) protein; Photoreceptors; Recoverin; Retinal guanylate cyclase (ROS-GC1); Rhodopsin kinase (RK, GRK1)
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/925888
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact