A low concentration (10(-11) mol/l) of epidermal growth factor (EGF) and/or an equimolar (10(-14) mol/l) mixture of glucagon and insulin stimulated DNA synthesis in hepatocytes in 4-day-old primary cultures of neonatal rat liver. EGF seems to have acted by inducing quiescent hepatocytes to begin cycling, while the glucagon-insulin combination seems to have acted mainly by shortening the cell cycle time. Incubation in low calcium medium blocked untreated hepatocytes in the G1 phase of their cycle and prevented EGF and the glucagon-insulin mixture from stimulating DNA synthesis. Nevertheless, hepatocytes in calcium-deficient medium did respond to these agents, as they reached a late stage of prereplicative development before being blocked: in fact, they initiated DNA synthesis soon after the addition of calcium. EGF, but not the glucagon-insulin combination, also enabled the already cycling hepatocytes (but not the newly activated ones) to overcome the block imposed by the extracellular calcium deficiency after a delay of several hours.

The calcium-dependence of the stimulation of neonatal rat hepatocyte DNA synthesis and division by epidermal growth factor, glucagon and insulin

ARMATO, Ubaldo;
1983-01-01

Abstract

A low concentration (10(-11) mol/l) of epidermal growth factor (EGF) and/or an equimolar (10(-14) mol/l) mixture of glucagon and insulin stimulated DNA synthesis in hepatocytes in 4-day-old primary cultures of neonatal rat liver. EGF seems to have acted by inducing quiescent hepatocytes to begin cycling, while the glucagon-insulin combination seems to have acted mainly by shortening the cell cycle time. Incubation in low calcium medium blocked untreated hepatocytes in the G1 phase of their cycle and prevented EGF and the glucagon-insulin mixture from stimulating DNA synthesis. Nevertheless, hepatocytes in calcium-deficient medium did respond to these agents, as they reached a late stage of prereplicative development before being blocked: in fact, they initiated DNA synthesis soon after the addition of calcium. EGF, but not the glucagon-insulin combination, also enabled the already cycling hepatocytes (but not the newly activated ones) to overcome the block imposed by the extracellular calcium deficiency after a delay of several hours.
1983
calcium-dependence; growth stimulation; primary cultures; neonatal rat hepatocytes; DNA synthesis; mitosis; by epidermal growth factor; glucagon; insulin
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/917
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact