In the presence of many waves, giant events can occur with a probability higher than expected for random dynamics. By studying linear light propagation in a glass fiber, we show that optical rogue waves originate from two key ingredients: granularity, or a minimal size of the light speckles at the fiber exit, and inhomogeneity, that is, speckles clustering into separate domains with different average intensities. These two features characterize also rogue waves in nonlinear systems; thus, nonlinearity just plays the role of bringing forth the two ingredients of granularity and inhomogeneity. © 2011 American Physical Society.
Titolo: | Granularity and inhomogeneity are the joint generators of optical rogue waves |
Autori: | |
Data di pubblicazione: | 2011 |
Rivista: | |
Abstract: | In the presence of many waves, giant events can occur with a probability higher than expected for random dynamics. By studying linear light propagation in a glass fiber, we show that optical rogue waves originate from two key ingredients: granularity, or a minimal size of the light speckles at the fiber exit, and inhomogeneity, that is, speckles clustering into separate domains with different average intensities. These two features characterize also rogue waves in nonlinear systems; thus, nonlinearity just plays the role of bringing forth the two ingredients of granularity and inhomogeneity. © 2011 American Physical Society. |
Handle: | http://hdl.handle.net/11562/903220 |
Appare nelle tipologie: | 01.01 Articolo in Rivista |