We reconsider work by Bellin and Scott in the 1990s on R. Milner and S. Abramsky's encoding of linear logic in the π-calculus and give an account of efforts to establish a tight connection between the structure of proofs and of the cut elimination process in multiplicative linear logic, on one hand, and the input-output behaviour of the processes that represent them, on the other, resulting in a proof-theoretic account of (a variant of) Chu's construction. But Milner's encoding of the linear lambda calculus suggests consideration of multiplicative co-intuitionistic linear logic: we provide a term assignment for it, a calculus of coroutines which presents features of concurrent and distributed computing. Finally, as a test case of its adequacy as a logic for distributed computation, we represent our term assignment as a λP system. We argue that translations of typed functional languages in concurrent and distributed systems (such as π-calculi or λP systems) are best typed with co-intuitionistic logic, where some features of computations match the logical properties in a natural way.
On the π-calculus and Co-intuitionistic Logic. Notes on Logic for Concurrency and λP Systems
BELLIN, Gianluigi;MENTI, ALESSANDRO
2014-01-01
Abstract
We reconsider work by Bellin and Scott in the 1990s on R. Milner and S. Abramsky's encoding of linear logic in the π-calculus and give an account of efforts to establish a tight connection between the structure of proofs and of the cut elimination process in multiplicative linear logic, on one hand, and the input-output behaviour of the processes that represent them, on the other, resulting in a proof-theoretic account of (a variant of) Chu's construction. But Milner's encoding of the linear lambda calculus suggests consideration of multiplicative co-intuitionistic linear logic: we provide a term assignment for it, a calculus of coroutines which presents features of concurrent and distributed computing. Finally, as a test case of its adequacy as a logic for distributed computation, we represent our term assignment as a λP system. We argue that translations of typed functional languages in concurrent and distributed systems (such as π-calculi or λP systems) are best typed with co-intuitionistic logic, where some features of computations match the logical properties in a natural way.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.