We show that timelike minimal cylinders in flat Minkowski space R^(1+n) always develop singularities if n = 2, as recently proved by L. Nguyen and G. Tian, are generically regular if n > 3, and exibit an intermediate behavior when n = 3. The proofis based on the use of the so-called orthogonal gauge for parametrizing timelike minimalcylinders.

On the regularity of timelike extremal surfaces

ORLANDI, Giandomenico
2015-01-01

Abstract

We show that timelike minimal cylinders in flat Minkowski space R^(1+n) always develop singularities if n = 2, as recently proved by L. Nguyen and G. Tian, are generically regular if n > 3, and exibit an intermediate behavior when n = 3. The proofis based on the use of the so-called orthogonal gauge for parametrizing timelike minimalcylinders.
2015
regularity; relativistic strings; Lorentzian minimal surfaces; differential topology
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/883197
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 6
social impact