In this study we analyzed the microRNA profile of cystic fibrosis (CF) bronchial epithelial IB3-1 cells infected with Pseudomonas aeruginosa by microarray and quantitative RT-PCR, demonstrating that microRNA 93 (miR-93), which is highly expressed in basal conditions, decreases during infection in parallel with increased expression of the IL-8 gene. The down-regulation of miR-93 after P. aeruginosa infection was confirmed in other bronchial cell lines derived from subjects with and without CF, namely CuFi-1 and NuLi-1 cells. Sequence analysis shows that the 3'-UTR region of IL-8 mRNA is a potential target of miR-93 and that the consensus sequence is highly conserved throughout molecular evolution. The possible involvement of miR-93 in IL-8 gene regulation was validated using three luciferase vectors, including one carrying the complete 3'-UTR region of the IL-8 mRNA and one carrying the same region with a mutated miR-93 site. Up-modulation of IL-8 after P. aeruginosa infection was counteracted in IB3-1, CuFi-1, and NuLi-1 cells by pre-miR-93 transfection. In addition, IL-8 was up-regulated in uninfected cells treated with antagomiR-93. Our results support the concept of a possible link between microRNA expression and IL-8 induction in bronchial epithelial cells infected with P. aeruginosa. Specifically, the data presented here indicate that, in addition to NF-κB-dependent up-regulation of IL-8 gene transcription, IL-8 protein expression is posttranscriptionally regulated by interactions of the IL-8 mRNA with the inhibitory miR-93
Expression of microRNA-93 and Interleukin-8 during Pseudomonas aeruginosa-mediated induction of proinflammatory responses
BEZZERRI, Valentino;DECHECCHI, MARIACRISTINA;CABRINI, GIULIO;
2014-01-01
Abstract
In this study we analyzed the microRNA profile of cystic fibrosis (CF) bronchial epithelial IB3-1 cells infected with Pseudomonas aeruginosa by microarray and quantitative RT-PCR, demonstrating that microRNA 93 (miR-93), which is highly expressed in basal conditions, decreases during infection in parallel with increased expression of the IL-8 gene. The down-regulation of miR-93 after P. aeruginosa infection was confirmed in other bronchial cell lines derived from subjects with and without CF, namely CuFi-1 and NuLi-1 cells. Sequence analysis shows that the 3'-UTR region of IL-8 mRNA is a potential target of miR-93 and that the consensus sequence is highly conserved throughout molecular evolution. The possible involvement of miR-93 in IL-8 gene regulation was validated using three luciferase vectors, including one carrying the complete 3'-UTR region of the IL-8 mRNA and one carrying the same region with a mutated miR-93 site. Up-modulation of IL-8 after P. aeruginosa infection was counteracted in IB3-1, CuFi-1, and NuLi-1 cells by pre-miR-93 transfection. In addition, IL-8 was up-regulated in uninfected cells treated with antagomiR-93. Our results support the concept of a possible link between microRNA expression and IL-8 induction in bronchial epithelial cells infected with P. aeruginosa. Specifically, the data presented here indicate that, in addition to NF-κB-dependent up-regulation of IL-8 gene transcription, IL-8 protein expression is posttranscriptionally regulated by interactions of the IL-8 mRNA with the inhibitory miR-93I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.