Objectives - Finite element modeling was adopted to quantitatively compare, for the first time and on a patient-specific basis, the biomechanical effects of a broad spectrum of different neochordal implantation techniques for the repair of isolated posterior mitral leaflet prolapse.Methods - Cardiac magnetic resonance images were acquired from 4 patients undergoing surgery. A patient-specific 3-dimensional model of the mitral apparatus and the motion of the annulus and papillary muscles were reconstructed. The location and extent of the prolapsing region were confirmed by intraoperative findings, and the mechanical properties of the mitral leaflets, chordae tendineae and expanded polytetrafluoroethylene neochordae were included. Mitral systolic biomechanics was simulated under preoperative conditions and after 5 different neochordal procedures: single neochorda, double neochorda, standard neochordal loop with 3 neochordae of the same length and 2 premeasured loops with 1 common neochordal loop and 3 different branched neochordae arising from it, alternatively one third and two thirds of the entire length.Results - The best repair in terms of biomechanics was achieved with a specific neochordal technique in the single patient, according to the location of the prolapsing region. However, all techniques achieved a slight reduction in papillary muscle forces and tension relief in intact native chordae proximal to the prolapsing region. Multiple neochordae implantation improved the repositioning of the prolapsing region below the annular plane and better redistributed mechanical stresses on the leaflet.Conclusions - Although applied on a small cohort of patients, systematic biomechanical differences were noticed between neochordal techniques, potentially affecting their short- to long-term clinical outcomes. This study opens the way to patient-specific optimization of neochordal techniques.

Is it possible to assess the best mitral valve repair in the individual patient? Preliminary results of a finite element study from magnetic resonance imaging data

Sturla, Francesco;ONORATI, FRANCESCO;PECHLIVANIDIS, KONSTANTINOS;MILANO, Aldo Domenico;MAZZUCCO, Alessandro;FAGGIAN, Giuseppe
2014-01-01

Abstract

Objectives - Finite element modeling was adopted to quantitatively compare, for the first time and on a patient-specific basis, the biomechanical effects of a broad spectrum of different neochordal implantation techniques for the repair of isolated posterior mitral leaflet prolapse.Methods - Cardiac magnetic resonance images were acquired from 4 patients undergoing surgery. A patient-specific 3-dimensional model of the mitral apparatus and the motion of the annulus and papillary muscles were reconstructed. The location and extent of the prolapsing region were confirmed by intraoperative findings, and the mechanical properties of the mitral leaflets, chordae tendineae and expanded polytetrafluoroethylene neochordae were included. Mitral systolic biomechanics was simulated under preoperative conditions and after 5 different neochordal procedures: single neochorda, double neochorda, standard neochordal loop with 3 neochordae of the same length and 2 premeasured loops with 1 common neochordal loop and 3 different branched neochordae arising from it, alternatively one third and two thirds of the entire length.Results - The best repair in terms of biomechanics was achieved with a specific neochordal technique in the single patient, according to the location of the prolapsing region. However, all techniques achieved a slight reduction in papillary muscle forces and tension relief in intact native chordae proximal to the prolapsing region. Multiple neochordae implantation improved the repositioning of the prolapsing region below the annular plane and better redistributed mechanical stresses on the leaflet.Conclusions - Although applied on a small cohort of patients, systematic biomechanical differences were noticed between neochordal techniques, potentially affecting their short- to long-term clinical outcomes. This study opens the way to patient-specific optimization of neochordal techniques.
2014
mitral valve prolapse; mitral valve repair; artificial ePTFE neochordae; finite element analysis; Magnetic resonance imaging; patient-specific modeling
File in questo prodotto:
File Dimensione Formato  
Sturla2014_Is it possible to assess the best mitral valve repair.pdf

solo utenti autorizzati

Tipologia: Versione dell'editore
Licenza: Dominio pubblico
Dimensione 2.22 MB
Formato Adobe PDF
2.22 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/778966
Citazioni
  • ???jsp.display-item.citation.pmc??? 13
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 26
social impact