We study a Dirichlet problem for an elliptic equation of resonant type involving a general nonlocal term. Using a result of Ricceri, we prove that the solution set for such equation has a positive topological dimension, and contains a nondegenerate connected component. In particular, the solution set has the cardinality of the continuum.
Titolo: | On the topological dimension of the solution set of a class of nonlocal elliptic problems |
Autori: | |
Data di pubblicazione: | 2013 |
Rivista: | |
Abstract: | We study a Dirichlet problem for an elliptic equation of resonant type involving a general nonlocal term. Using a result of Ricceri, we prove that the solution set for such equation has a positive topological dimension, and contains a nondegenerate connected component. In particular, the solution set has the cardinality of the continuum. |
Handle: | http://hdl.handle.net/11562/765763 |
Appare nelle tipologie: | 01.01 Articolo in Rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.