We study a p-Laplacian dierence equation on the set of integers, involving a coercive weight function and a reaction term satisfying the Ambrosetti-Rabinowitz condition. By means of critical point theory and a discrete maximum principle, we prove the existence of a positive homoclinic solution.
Titolo: | Positive homoclinic solutions for the discrete p-Laplacian with a coercive weight function |
Autori: | |
Data di pubblicazione: | 2014 |
Rivista: | |
Abstract: | We study a p-Laplacian dierence equation on the set of integers, involving a coercive weight function and a reaction term satisfying the Ambrosetti-Rabinowitz condition. By means of critical point theory and a discrete maximum principle, we prove the existence of a positive homoclinic solution. |
Handle: | http://hdl.handle.net/11562/758764 |
Appare nelle tipologie: | 01.01 Articolo in Rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.