Epithelial-mesenchymal transition (EMT) of tubular cells is one of the mechanisms which contribute to renal fibrosis and transforming growth factor-β (TGF-β) is one of the main triggers. Heparanase (HPSE) is an endo-β-D-glucuronidase that cleaves heparan-sulfate thus regulating the bioavailability of growth factors (FGF-2, TGF-β). HPSE controls FGF-2-induced EMT in tubular cells and is necessary for the development of diabetic nephropathy in mice. The aim of this study was to investigate whether HPSE can modulate the expression and the effects of TGF-β in tubular cells. First we proved that the lack of HPSE or its inhibition prevents the increased synthesis of TGF-β by tubular cells in response to pro-fibrotic stimuli such as FGF-2, advanced glycosylation end products (AGE) and albumin overload. Second, since TGF-β may derive from sources different from tubular cells, we investigated whether HPSE modulates tubular cell response to exogenous TGF-β. HPSE does not prevent EMT induced by TGF-β although it slows its onset; indeed in HPSE-silenced cells the acquisition of a mesenchymal phenotype does not develop as quickly as in wt cells. Additionally, TGF-β induces an autocrine loop to sustain its signal, whereas the lack of HPSE partially interferes with this autocrine loop. Overall these data confirm that HPSE is a key player in renal fibrosis since it interacts with the regulation and the effects of TGF-β. HPSE is needed for pathological TGF-β overexpression in response to pro-fibrotic factors. Furthermore, HPSE modulates TGF-β-induced EMT: the lack of HPSE delays tubular cell transdifferentiation, and impairs the TGF-β autocrine loop.

Heparanase is a key player in renal fibrosis by regulating TGF-β expression and activity.

MASOLA, Valentina;Zaza, Gianluigi;Gambaro G;LUPO, Antonio;
2014-01-01

Abstract

Epithelial-mesenchymal transition (EMT) of tubular cells is one of the mechanisms which contribute to renal fibrosis and transforming growth factor-β (TGF-β) is one of the main triggers. Heparanase (HPSE) is an endo-β-D-glucuronidase that cleaves heparan-sulfate thus regulating the bioavailability of growth factors (FGF-2, TGF-β). HPSE controls FGF-2-induced EMT in tubular cells and is necessary for the development of diabetic nephropathy in mice. The aim of this study was to investigate whether HPSE can modulate the expression and the effects of TGF-β in tubular cells. First we proved that the lack of HPSE or its inhibition prevents the increased synthesis of TGF-β by tubular cells in response to pro-fibrotic stimuli such as FGF-2, advanced glycosylation end products (AGE) and albumin overload. Second, since TGF-β may derive from sources different from tubular cells, we investigated whether HPSE modulates tubular cell response to exogenous TGF-β. HPSE does not prevent EMT induced by TGF-β although it slows its onset; indeed in HPSE-silenced cells the acquisition of a mesenchymal phenotype does not develop as quickly as in wt cells. Additionally, TGF-β induces an autocrine loop to sustain its signal, whereas the lack of HPSE partially interferes with this autocrine loop. Overall these data confirm that HPSE is a key player in renal fibrosis since it interacts with the regulation and the effects of TGF-β. HPSE is needed for pathological TGF-β overexpression in response to pro-fibrotic factors. Furthermore, HPSE modulates TGF-β-induced EMT: the lack of HPSE delays tubular cell transdifferentiation, and impairs the TGF-β autocrine loop.
2014
TGFbeta; heparanase; Epithelial-mesenchymal transition
File in questo prodotto:
File Dimensione Formato  
BBA molecular cell research 2014.pdf

solo utenti autorizzati

Tipologia: Versione dell'editore
Licenza: Accesso ristretto
Dimensione 1.19 MB
Formato Adobe PDF
1.19 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/750161
Citazioni
  • ???jsp.display-item.citation.pmc??? 27
  • Scopus 58
  • ???jsp.display-item.citation.isi??? 53
social impact