Abstract: We study a class of reaction-diffusion type equations on a finite network with continuity assumptions and a kind of non-local, stationary Kirchhoff's conditions at the nodes. A multiplicative random Gaussian perturbation acting along the edges is also included. For such a problem we prove Gaussian estimates for the semigroup generated by the evolution operator, hence generalizing similar results previously obtained in [21]. In particular our main goal is to extend known results on Gaussian upper bounds for heat equations on networks with local boundary conditions to those with non-local ones. We conclude showing how our results can be used to apply techniques developed in [13] to solve a class of Stochastic Optimal Control Problems inspired by neurological dynamics.

Gaussian estimates on networks with applications to optimal control

DI PERSIO, Luca
2011

Abstract

Abstract: We study a class of reaction-diffusion type equations on a finite network with continuity assumptions and a kind of non-local, stationary Kirchhoff's conditions at the nodes. A multiplicative random Gaussian perturbation acting along the edges is also included. For such a problem we prove Gaussian estimates for the semigroup generated by the evolution operator, hence generalizing similar results previously obtained in [21]. In particular our main goal is to extend known results on Gaussian upper bounds for heat equations on networks with local boundary conditions to those with non-local ones. We conclude showing how our results can be used to apply techniques developed in [13] to solve a class of Stochastic Optimal Control Problems inspired by neurological dynamics.
Stochastic partial differential equations on networks; Gaussian estimates; Optimal stochastic control
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11562/744766
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact