The development of a very sensitive, direct injection high-performance liquid chromatographic method, using a post-column reactor with immobilized alcohol oxidase, was undertaken with the aim of determining methanol and ethanol levels in microlitre volumes of biological samples. After reversed-phase chromatography to separate methanol and ethanol, the analytes were enzymically converted into the respective aldehydes with formation of stoichiometric amounts of hydrogen peroxide, which could be measured via electrochemical oxidation at a platinum electrode. Some problems were encountered in the development of solid-phase enzymic reactors, using a delicate enzyme, that is prone to lose activity, such as alcohol oxidase. Owing to the slightly alkaline pH required for the optimum activity of alcohol oxidase, polymeric columns seemed to be preferable for the chromatography. HEMA copolymer was chosen as the stationary phase, but the methanol and ethanol peaks eluted close together and posed severe problems of limiting post-column band spreading. Reactors based on coarse supports for enzyme immobilization gave unacceptable band spreading, causing the methanol and ethanol peaks to overlap. On the other hand high-performance liquid chromatographic packings maintained the efficiency of the chromatographic separation, quite independently of the reactor volume. Polymeric supports proved superior to silicas in maintaining the enzyme activity. However, relevant changes in the enzyme substrate specificity were observed after immobilization.
Development of post-column enzymic reactors with immobilized alcohol oxidase for use in the high-performance liquid chromatographic assay of alcohols with electrochemical detection
TAGLIARO, Franco;
1991-01-01
Abstract
The development of a very sensitive, direct injection high-performance liquid chromatographic method, using a post-column reactor with immobilized alcohol oxidase, was undertaken with the aim of determining methanol and ethanol levels in microlitre volumes of biological samples. After reversed-phase chromatography to separate methanol and ethanol, the analytes were enzymically converted into the respective aldehydes with formation of stoichiometric amounts of hydrogen peroxide, which could be measured via electrochemical oxidation at a platinum electrode. Some problems were encountered in the development of solid-phase enzymic reactors, using a delicate enzyme, that is prone to lose activity, such as alcohol oxidase. Owing to the slightly alkaline pH required for the optimum activity of alcohol oxidase, polymeric columns seemed to be preferable for the chromatography. HEMA copolymer was chosen as the stationary phase, but the methanol and ethanol peaks eluted close together and posed severe problems of limiting post-column band spreading. Reactors based on coarse supports for enzyme immobilization gave unacceptable band spreading, causing the methanol and ethanol peaks to overlap. On the other hand high-performance liquid chromatographic packings maintained the efficiency of the chromatographic separation, quite independently of the reactor volume. Polymeric supports proved superior to silicas in maintaining the enzyme activity. However, relevant changes in the enzyme substrate specificity were observed after immobilization.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.