Il punto di partenza di questa tesi è l'analisi dei metodi allo stato dell'arte di registrazione delle immagini mediche per verificare se sono adatti ad essere utilizzati per assistere il medico durante una procedura minimamente invasiva , ad esempio una procedura percutanea eseguita manualmente o un intervento teleoperato eseguito per mezzo di un robot . La prima conclusione è che, anche se ci sono tanti lavori dedicati allo sviluppo di algoritmi di registrazione da applicare nel contesto medico, la maggior parte di essi non sono stati progettati per essere utilizzati nello scenario della sala operatoria (OR) anche perché, rispetto ad altre applicazioni , OR richiede anche la validazione, prestazioni in tempo reale e la presenza di altri strumenti . Gli algoritmi allo stato dell'arte sono basati su un iterazione in tre fasi : ottimizzazione - trasformazione - valutazione della somiglianza delle immagini registrate. In questa tesi, studiamo la fattibilità dell'approccio in tre fasi per applicazioni OR, mostrando i limiti che tale approccio incontra nelle applicazioni che stiamo considerando. Verrà dimostrato come un metodo semplice si potrebbe utilizzare nella OR. Abbiamo poi sviluppato una teoria che è adatta a registrare grandi insiemi di dati non strutturati estratti da immagini mediche, tenendo conto dei vincoli della OR . Vista l'impossibilità di lavorare con dati medici di tipo DICOM, verrà impiegato un metodo per registrare dataset composti da insiemi di punti non strutturati. Gli algoritmi proposti sono progettati per trovare la corrispondenza spaziale in forma chiusa tenendo conto del tipo di dati, il vincolo del tempo e la presenza di rumore e /o piccole deformazioni. La teoria e gli algoritmi che abbiamo sviluppato sono derivati dalla teoria delle forme proposta da Kendall (Kendall's shapes) e utilizza un descrittore globale della forma per calcolare le corrispondenze e la distanza tra le strutture coinvolte . Poiché la registrazione è solo una componente nelle applicazioni mediche, l' ultima parte della tesi è dedicata ad alcune applicazioni pratiche in OR che possono beneficiare della procedura di registrazione .
The registration of medical images is necessary to establish spatial correspondences across two or more images. Registration is rarely the end-goal, but instead, the results of image registration are used in other tasks. The starting point of this thesis is to analyze which methods at the state of the art of image registration are suitable to be used in assisting a physician during a minimally invasive procedure, such as a percutaneous procedure performed manually or a teleoperated intervention performed by the means of a robot. The first conclusion is that, even if much previous work has been devoted to develop registration algorithms to be applied in the medical context, most of them are not designed to be used in the operating room scenario (OR) because, compared to other applications, the OR requires also a strong validation, real-time performance and the presence of other instruments. Almost all of these algorithms are based on a three phase iteration: optimize-transform-evaluate similarity. In this thesis, we study the feasibility of this three steps approach in the OR, showing the limits that such approach encounter in the applications we are considering. We investigate how could a simple method be realizable and what are the assumptions for such a method to work. We then develop a theory that is suitable to register large sets of unstructured data extracted from medical images keeping into account the constraints of the OR. The use of the whole radiologic information is not feasible in the OR context, therefore the method we are introducing registers processed dataset extracted from the original medical images. The framework we propose is designed to find the spatial correspondence in closed form keeping into account the type of the data, the real-time constraint and the presence of noise and/or small deformations. The theory and algorithms we have developed are in the framework of the shape theory proposed by Kendall (Kendall's shapes) and uses a global descriptor of the shape to compute the correspondences and the distance between shapes. Since the registration is only a component of a medical application, the last part of the thesis is dedicated to some practical applications in the OR that can benefit from the registration procedure.
Registration of medical images for applications in minimally invasive procedures
MARIS, Bogdan Mihai
2014-01-01
Abstract
The registration of medical images is necessary to establish spatial correspondences across two or more images. Registration is rarely the end-goal, but instead, the results of image registration are used in other tasks. The starting point of this thesis is to analyze which methods at the state of the art of image registration are suitable to be used in assisting a physician during a minimally invasive procedure, such as a percutaneous procedure performed manually or a teleoperated intervention performed by the means of a robot. The first conclusion is that, even if much previous work has been devoted to develop registration algorithms to be applied in the medical context, most of them are not designed to be used in the operating room scenario (OR) because, compared to other applications, the OR requires also a strong validation, real-time performance and the presence of other instruments. Almost all of these algorithms are based on a three phase iteration: optimize-transform-evaluate similarity. In this thesis, we study the feasibility of this three steps approach in the OR, showing the limits that such approach encounter in the applications we are considering. We investigate how could a simple method be realizable and what are the assumptions for such a method to work. We then develop a theory that is suitable to register large sets of unstructured data extracted from medical images keeping into account the constraints of the OR. The use of the whole radiologic information is not feasible in the OR context, therefore the method we are introducing registers processed dataset extracted from the original medical images. The framework we propose is designed to find the spatial correspondence in closed form keeping into account the type of the data, the real-time constraint and the presence of noise and/or small deformations. The theory and algorithms we have developed are in the framework of the shape theory proposed by Kendall (Kendall's shapes) and uses a global descriptor of the shape to compute the correspondences and the distance between shapes. Since the registration is only a component of a medical application, the last part of the thesis is dedicated to some practical applications in the OR that can benefit from the registration procedure.File | Dimensione | Formato | |
---|---|---|---|
BogdanMaris_U-Gov.compressed.pdf
accesso aperto
Tipologia:
Tesi di dottorato
Licenza:
Dominio pubblico
Dimensione
4.95 MB
Formato
Adobe PDF
|
4.95 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.