Metallothioneins (MT) are a family of proteins actively involved in metal detoxification and storage as well as in prevention of free-radical damage. Changes in the levels of MT have been described in a number of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, prion protein disease, Binswanger type of subcortical vascular dementia, and amyotrophic lateral sclerosis. This suggests that MT functions might be more complex and vast than what was initially thought. In this review, we summarize the current knowledge on the potential involvement of MT in the mentioned neurodegenerative diseases while also discussing the emerging evidence proposing MT modulation as a feasible therapeutic approach. Enhancing repair mechanisms after neurological damage and/or protection against oxidative stress through a proper modulation of this family of protein might indeed represent an important avenue to cope neurodegeneration.

Metallothioneins and the central nervous system: from a deregulation in neurodegenerative diseases to the development of new therapeutic approaches.

Bolognin, Silvia;
2014-01-01

Abstract

Metallothioneins (MT) are a family of proteins actively involved in metal detoxification and storage as well as in prevention of free-radical damage. Changes in the levels of MT have been described in a number of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, prion protein disease, Binswanger type of subcortical vascular dementia, and amyotrophic lateral sclerosis. This suggests that MT functions might be more complex and vast than what was initially thought. In this review, we summarize the current knowledge on the potential involvement of MT in the mentioned neurodegenerative diseases while also discussing the emerging evidence proposing MT modulation as a feasible therapeutic approach. Enhancing repair mechanisms after neurological damage and/or protection against oxidative stress through a proper modulation of this family of protein might indeed represent an important avenue to cope neurodegeneration.
2014
brain development; metal ions; metallothioneins; neurodegenerative diseases
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/676159
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 16
social impact