La pratica chirurgica sta costantemente sostituendo i tradizionali approcci operatori con tecniche minimamente invasive, queste ultime forniscono molti benefici per il paziente come per esempio la riduzione delle complicanze post-operative, un tempo di recupero ridotto che garantisce un’ospedalizzazione più breve. Le procedure percutanee sono probabilmente le tecniche minimamente invasive più diffuse, quest’approccio è utilizzato sia per la diagnosi sia per il trattamento di aree patologiche localizzate in molti distretti del corpo umano: testa e collo, arti, polmoni, cuore e in generale molte delle strutture in ambito addominale e pelvico. Nell’ablazione percutanea uno strumento chirurgico che assomiglia a grosso ago è accuratamente inserito attraverso la pelle del paziente in corrispondenza di un’area patologica per distruggere il tessuto malato tramite fonti d’intensa energia o bassa temperatura. Il secondo approccio è chiamato crio-ablazione percutanea e fornisce risultati nel medio termine molto incoraggiante se confrontati con altre tecniche minimamente invasive. L’ablazione percutanea richiede l’accurato posizionamento degli strumenti per garantire un completo trattamento della zona patologica, ottenendo quindi la possibilità di ricorrenza della medesima condizione patologica o di altre complicazioni pre o post operative. Anche se queste procedure possono essere eseguite alla “cieca”, l’introduzione della guida tramite immagini mediche può migliorare l’esito di queste procedure anche nel caso di utenti inesperti o situazioni patologiche critiche. L’ablazione percutanea può beneficiare in modo molto efficace dall’introduzione di un sistema di navigazione computerizzato, capace di fornire una guida integrando le immagini cliniche con la localizzazione degli strumenti chirurgici. Le caratteristiche richieste da questi sistemi sono la capacità di eseguire la registrazione automatica tra immagini intra e pre operative, pianificare la traiettoria nell’inserimento di aghi e guida nel corso dell’inserimento con interfaccia semplice e intuitiva da utilizzare. Inoltre il monitoraggio accurato del posizionamento degli aghi e della zona ablata è fondamentale per ottenere un trattamento ottimale. I sistemi di guida basati su ecografica forniscono le caratteristiche richieste in un sistema compatto e dai costi contenuti. Algoritmi di elaborazione avanzata sono necessari per superare alcuni dei limiti di questi sistemi, soprattutto legati alla ridotta qualità e risoluzione delle immagini ecografiche. L’introduzione di un sistema di rilevamento della posizione (tracker) capace di misurare la posizione e l’orientamento di una sonda ecografica e di altri strumenti nel corso dell’intervento è una parte fondamentale di un sistema di navigazione e può permettere la ricostruzione tridimensionale automatica dell’anatomia del paziente basata sull’estrazione di punti salienti dalle immagini bidimensionali. Per permettere una ricostruzione tridimensionale corretta, una procedura di calibrazione è necessaria per stimare la trasformazione sconosciuta tra il sistema di riferimento del tracker e quello dell’immagine ecografica. Nelle procedure di ablazione percutanee, monitorare l’area trattata è fondamentale per garantire la completa distruzione del tessuto malato ed evitare la ricorrenza a breve termine. Nel caso specifico della crio-ablazione è molto complesso eseguire questo monitoraggio poiché l’area congelata produce forti riflessioni e ombre che rendono estremamente complesso garantire la stima corretta dell’area ablata. In questa tesi descriveremo diversi metodi capaci di migliorare gli attuali sistemi di navigazione ecografici. Il primo contributo di questa tesi riguarda l’introduzione di una procedura di calibrazione basata su dati acquisiti con diversi settaggi di profondità per il calcolo di una singola trasformazione rigida. La procedura è basata sulla stima automatica della dimensione del fascio ultrasonoro in modo da migliorare l’integrazione di feature estratte a diverse profondità di acquisizione. Il metodo proposto permette una calibrazione della sonda ecografica con un controllo meno stringente dei parametri di acquisizione e senza effetti significativi sulla precisione e l’accuratezza della calibrazione. Questo potrebbe facilitare l’adozione di un sistema ecografico integrato con un tracker nell’ambiente clinico reale, dove i parametri di acquisizione sono cambiati molto spesso per garantire la corretta visualizzazione dell’anatomia del paziente. Il secondo contributo di questa tesi consiste nello sviluppo di un rilevatore e descrittore di punti salienti specificatamente pensato per le immagini ecografiche, dove le informazioni d’intensità non sono stabili e affidabili. Il metodo è basato sull’operatore “Local Binary Pattern” calcolato lungo diverse direzioni e scale sulle mappe di congruenza di fase. Queste scelte permettono una localizzazione robusta di punti salienti nelle immagini ecografiche anche alla presenza di trasformazioni geometriche e d’intensità. Questi punti salienti possono essere usati per la localizzazione basata su immagini degli strumenti o delle aree patologiche o per permettere la registrazione con altre tipologie d’immagini acquisite prima, durante o dopo la procedura chirurgica. Il terzo contributo consiste nell’introduzione di un sistema di guida compatto che integra un piccolo schermo direttamente sullo strumento di ablazione per fornire indicazioni su come muovere lo strumento per garantire il corretto inserimento lungo la traiettoria pianificata. Fornire indicazione all’utente in modo intuitivo e semplice è fondamentale per garantire la corretta esecuzione della traiettoria pianificata, di conseguenza migliorando i risultati finali e riducendo i tempi e i rischi delle procedure. Il quarto contributo supera l’impossibilità di monitorare l’area di ablazione con immagini ecografiche nel corso di procedure di crio-ablazione. Il metodo è basato sull’elastografia a ultrasuoni, una tecnica utilizzata per misurare l’elasticità del tessuto. Siccome il congelamento produce danni cellulari, si è deciso di misurare l’elasticità del tessuto prima e dopo il completo scongelamento del tessuto. Questo metodo permette di monitorare le aree trattate con la crio-ablazione subito dopo la fine dell’intervento, permettendo in questo modo l’adozione di azioni correttive nel caso di trattamento non completo o dell’insorgenza di complicazioni. I contributi presentati in questa tesi, se integrati in un sistema ecografico di navigazione chirurgica, possono migliorare le caratteristiche di questi sistemi avanzati con specifica attenzione per i requisiti dettati dalla pratica clinica reale.
Surgical practice is constantly replacing traditional invasive approaches with minimally invasive techniques, which provide many benefits for the patient such as reduced postoperative complications, faster recovery and shorten hospitalization. Percutaneous procedures are probably the most widely used minimally invasive technique, this approach is used both for diagnosis (i.e. biopsy) and for the treatment of localized pathological areas in many regions of the human body: head and neck, limbs, lungs, hearth, abdominal and pelvic structures. In percutaneous ablation a surgical tool that resembles a thick needle is accurately inserted through the skin of the patient in correspondence of a pathological area to destroy diseased tissue thanks to high energy or low temperature. The latter approach is called percutaneous cryoablation and provides very encouraging mid-term outcome compared with other minimally invasive techniques. Percutaneous ablation requires accurate positioning of the tools to guarantee the complete treatment of diseased area, thus reducing the possible re-insurgence of same pathological condition or other intra or post operative complications. Although these procedures could be performed blindly the introduction of image guidance could improve the outcome of the procedure even in the case of inexpert users or critical cases. Therefore percutaneous ablation could greatly benefit from the introduction of a computer navigation system, able to provide integrated guidance with imaging sensor and tools localization. Required characteristics are the ability of performing automatic registration with other intra-operative and pre-operative dataset, planning needle trajectory and guidance during the insertion with effective and user-friendly interface. Furthermore the accurate monitoring of the needle position and ablation area is fundamental to obtain a full treatment of the pathological area. Ultrasound guided systems provide the needed characteristics in a compact and coste ffective device. Advance processing techniques are necessary to overcome some limitations of ultrasound based system, mainly connected to limited quality and resolution of these images. The introduction of a tracking system able to measure the position and the orientation of ultrasound probe and tools is a key component of a navigation system, and could enable the automatic 3D reconstruction of patient anatomy based on the extraction of feature points from 2D images. To enable the correct 3D reconstruction a calibration procedure is necessary to estimate an unknown rigid transformation between tracking and image reference systems. In percutaneous ablation procedures, monitoring the ablation area is fundamental to guarantee to complete suppression of the diseased tissues and avoid short term recurrence. The specific case of cryoablation is very challenging since the frozen zone produces strong re ections and shadows that make it unfeasible to guarantee the proper monitoring of the ablated area. In this thesis we describe different methods able to improve the current ultrasound based navigation systems. The first contribution of this thesis is the introduction of an ultrasound calibration procedure based on data acquired with different acquisition depth settings for the computation of a single rigid transformation. The procedure is based on the automatic estimation of the beam width to improve the integration of feature extracted from different depth settings. The proposed method enables the calibration of ultrasound probe with less strict control of the acquisition parameters and without significant effect on the calibration accuracy and precision. This would ease the adoption of tracked ultrasound system in the real clinical condition, where acquisition parameters are changed very often to guarantee the correct visualization of patient anatomy. The second contribution of this thesis is the development of a feature detector and descriptor able to localize and match salient points from ultrasound image. These methods have been designed and tested with specific attention to ultrasound images, where the intensity information are not stable. The detector is based a local energy model in place of the widely adopted gradient methods, where feature points are localized based on the phase congruency of Fourier components. The detector is based on Local Binary Pattern operator computed over a local angle and direction of the phase congruency. These choices enable the robust localization of feature point in ultrasound image in presence of intensity and geometrical transformation. These feature points could be used for the image based localization of tools or pathological areas, or to enable the registration with other imaging dataset acquired before, during or after the surgical procedure. The third contribution is the introduction of a compact navigation device that integrates a small display directly into the ablation tool to provide indication on how to move the needle in the proper way and to guarantee the correct insertion along the planned trajectory. Providing indications to the user in a confortable and effective manner is fundamental to guarantee the correct execution of the planned trajectory, consequently improving the final result of the procedure with reduced risks and reduced procedure duration. The fourth contribution overcomes the unfeasible monitoring of the ablation area with ultrasound image during cryoablation procedures, and it is based on ultrasound elastography. Ultrasound elastography is used for the measurement of tissue elasticity; since the freezing produces cellular structural damage we measure the tissue elastic properties before and after the complete thawing of the tissue. This method would enable the monitoring of cryo ablated area immediately after the intervention, thus enabling the effective adoption of corrective actions in case of not complete treatment or complications. We believe that the contributions described in this thesis, if integrated in an ultrasound guided navigation system, will improve the characteristics of these advanced systems with specific attention to real clinical requirements.
Navigation for percutaneous surgical interventions: ultrasound data processing, feature extraction and 3D organ reconstruction
DALL'ALBA, Diego
2014-01-01
Abstract
Surgical practice is constantly replacing traditional invasive approaches with minimally invasive techniques, which provide many benefits for the patient such as reduced postoperative complications, faster recovery and shorten hospitalization. Percutaneous procedures are probably the most widely used minimally invasive technique, this approach is used both for diagnosis (i.e. biopsy) and for the treatment of localized pathological areas in many regions of the human body: head and neck, limbs, lungs, hearth, abdominal and pelvic structures. In percutaneous ablation a surgical tool that resembles a thick needle is accurately inserted through the skin of the patient in correspondence of a pathological area to destroy diseased tissue thanks to high energy or low temperature. The latter approach is called percutaneous cryoablation and provides very encouraging mid-term outcome compared with other minimally invasive techniques. Percutaneous ablation requires accurate positioning of the tools to guarantee the complete treatment of diseased area, thus reducing the possible re-insurgence of same pathological condition or other intra or post operative complications. Although these procedures could be performed blindly the introduction of image guidance could improve the outcome of the procedure even in the case of inexpert users or critical cases. Therefore percutaneous ablation could greatly benefit from the introduction of a computer navigation system, able to provide integrated guidance with imaging sensor and tools localization. Required characteristics are the ability of performing automatic registration with other intra-operative and pre-operative dataset, planning needle trajectory and guidance during the insertion with effective and user-friendly interface. Furthermore the accurate monitoring of the needle position and ablation area is fundamental to obtain a full treatment of the pathological area. Ultrasound guided systems provide the needed characteristics in a compact and coste ffective device. Advance processing techniques are necessary to overcome some limitations of ultrasound based system, mainly connected to limited quality and resolution of these images. The introduction of a tracking system able to measure the position and the orientation of ultrasound probe and tools is a key component of a navigation system, and could enable the automatic 3D reconstruction of patient anatomy based on the extraction of feature points from 2D images. To enable the correct 3D reconstruction a calibration procedure is necessary to estimate an unknown rigid transformation between tracking and image reference systems. In percutaneous ablation procedures, monitoring the ablation area is fundamental to guarantee to complete suppression of the diseased tissues and avoid short term recurrence. The specific case of cryoablation is very challenging since the frozen zone produces strong re ections and shadows that make it unfeasible to guarantee the proper monitoring of the ablated area. In this thesis we describe different methods able to improve the current ultrasound based navigation systems. The first contribution of this thesis is the introduction of an ultrasound calibration procedure based on data acquired with different acquisition depth settings for the computation of a single rigid transformation. The procedure is based on the automatic estimation of the beam width to improve the integration of feature extracted from different depth settings. The proposed method enables the calibration of ultrasound probe with less strict control of the acquisition parameters and without significant effect on the calibration accuracy and precision. This would ease the adoption of tracked ultrasound system in the real clinical condition, where acquisition parameters are changed very often to guarantee the correct visualization of patient anatomy. The second contribution of this thesis is the development of a feature detector and descriptor able to localize and match salient points from ultrasound image. These methods have been designed and tested with specific attention to ultrasound images, where the intensity information are not stable. The detector is based a local energy model in place of the widely adopted gradient methods, where feature points are localized based on the phase congruency of Fourier components. The detector is based on Local Binary Pattern operator computed over a local angle and direction of the phase congruency. These choices enable the robust localization of feature point in ultrasound image in presence of intensity and geometrical transformation. These feature points could be used for the image based localization of tools or pathological areas, or to enable the registration with other imaging dataset acquired before, during or after the surgical procedure. The third contribution is the introduction of a compact navigation device that integrates a small display directly into the ablation tool to provide indication on how to move the needle in the proper way and to guarantee the correct insertion along the planned trajectory. Providing indications to the user in a confortable and effective manner is fundamental to guarantee the correct execution of the planned trajectory, consequently improving the final result of the procedure with reduced risks and reduced procedure duration. The fourth contribution overcomes the unfeasible monitoring of the ablation area with ultrasound image during cryoablation procedures, and it is based on ultrasound elastography. Ultrasound elastography is used for the measurement of tissue elasticity; since the freezing produces cellular structural damage we measure the tissue elastic properties before and after the complete thawing of the tissue. This method would enable the monitoring of cryo ablated area immediately after the intervention, thus enabling the effective adoption of corrective actions in case of not complete treatment or complications. We believe that the contributions described in this thesis, if integrated in an ultrasound guided navigation system, will improve the characteristics of these advanced systems with specific attention to real clinical requirements.File | Dimensione | Formato | |
---|---|---|---|
PhD_Thesis_UniVR_Final_DiegoDallAlba_compressed.pdf
non disponibili
Tipologia:
Tesi di dottorato
Licenza:
Accesso ristretto
Dimensione
1.72 MB
Formato
Adobe PDF
|
1.72 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.