1. Section of the posterior two-thirds of the corpus callosum eliminates almost completely the response of superior colliculus (SC) neurons to stimulation of the contralateral eye in split-chiasm cats. On the contrary, the responsiveness of SC neurons to stimulation of the contralateral eye is not abolished by a transection of the posterior and tectal commissures leaving the corpus callosum intact. The callosal section also reduces the number of SC receptive fields abutting the vertical meridian in the ipsilateral eye of split-chiasm cats. 2. In cats with intact optic pathways, a similar callosal section abolishes the SC representation of the ipsilateral visual field in the ipsilateral eye and also reduces the number of receptive fields adjoining the vertical meridian in the same eye. In the contralateral eye, the SC representation of the ipsilateral visual field is reduced in extension to about one-fifth of that seen in cats with intact commissures. 3. The results suggest that the corpus callosum is the main pathway for cross-midline communication of visual information at not only the cortical, but also the midbrain level. The corpus callosum may subserve this function because it contains uninterrupted crossed corticotectal projections or because it transmits visual information from one hemisphere to contralateral cortical areas projecting ipsilaterally to SC. The latter hypothesis is more likely but, in any case, the findings imply that the lack of interhemispheric transfer of visual learning in cats with a chiasmatic and callosal section may depend on a midline disconnection of both subcortical and cortical visual centers. 4. The corpus callosum is also responsible for the representation of the ipsilateral visual field of the ipsilateral eye in the cat SC. The SC representation of the ipsilateral visual field in the contralateral eye is due, in minimal part, to direct retinotectal connections from temporal retina and, for the largest part, to the corpus callosum. 5. Finally, the corpus callosum contributes to the representation of the contralateral visual field near the vertical meridian of the temporal retina in both split-chiasm and normal cats. This is probably due to the scarcity of direct retinotectal projections from this part of the retina and to their supplementation by corticotectal neurons influenced by the callosal afferents.

Importance of corpus callosum for visual receptive fields of single neurons in cat superior colliculus

Berlucchi G.;Marzi C. A.;
1979-01-01

Abstract

1. Section of the posterior two-thirds of the corpus callosum eliminates almost completely the response of superior colliculus (SC) neurons to stimulation of the contralateral eye in split-chiasm cats. On the contrary, the responsiveness of SC neurons to stimulation of the contralateral eye is not abolished by a transection of the posterior and tectal commissures leaving the corpus callosum intact. The callosal section also reduces the number of SC receptive fields abutting the vertical meridian in the ipsilateral eye of split-chiasm cats. 2. In cats with intact optic pathways, a similar callosal section abolishes the SC representation of the ipsilateral visual field in the ipsilateral eye and also reduces the number of receptive fields adjoining the vertical meridian in the same eye. In the contralateral eye, the SC representation of the ipsilateral visual field is reduced in extension to about one-fifth of that seen in cats with intact commissures. 3. The results suggest that the corpus callosum is the main pathway for cross-midline communication of visual information at not only the cortical, but also the midbrain level. The corpus callosum may subserve this function because it contains uninterrupted crossed corticotectal projections or because it transmits visual information from one hemisphere to contralateral cortical areas projecting ipsilaterally to SC. The latter hypothesis is more likely but, in any case, the findings imply that the lack of interhemispheric transfer of visual learning in cats with a chiasmatic and callosal section may depend on a midline disconnection of both subcortical and cortical visual centers. 4. The corpus callosum is also responsible for the representation of the ipsilateral visual field of the ipsilateral eye in the cat SC. The SC representation of the ipsilateral visual field in the contralateral eye is due, in minimal part, to direct retinotectal connections from temporal retina and, for the largest part, to the corpus callosum. 5. Finally, the corpus callosum contributes to the representation of the contralateral visual field near the vertical meridian of the temporal retina in both split-chiasm and normal cats. This is probably due to the scarcity of direct retinotectal projections from this part of the retina and to their supplementation by corticotectal neurons influenced by the callosal afferents.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/6355
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 35
  • ???jsp.display-item.citation.isi??? ND
social impact