Regulatory T cells (Tregs) maintain tolerance toward self-antigens and suppress autoimmune diseases, although the underlying molecular mechanisms are unclear. In this study, we show that mice deficient for P-selectin glycoprotein ligand-1 (PSGL-1) develop a more severe form of experimental autoimmune encephalomyelitis than wild type animals do, suggesting that PSGL-1 has a role in the negative regulation of autoimmunity. We found that Tregs lacking PSGL-1 were unable to suppress experimental autoimmune encephalomyelitis and failed to inhibit T cell proliferation in vivo in the lymph nodes. Using two-photon laser-scanning microscopy in the lymph node, we found that PSGL-1 expression on Tregs had no role in the suppression of early T cell priming after immunization with Ag. Instead, PSGL-1-deficient Tregs lost the ability to modulate T cell movement and failed to inhibit the T cell-dendritic cell contacts and T cell clustering essential for sustained T cell activation during the late phase of the immune response. Notably, PSGL-1 expression on myelin-specific effector T cells had no role in T cell locomotion in the lymph node. Our data show that PSGL-1 represents a previously unknown, phase-specific mechanism for Treg-mediated suppression of the persistence of immune responses and autoimmunity induction.

Regulatory T Cells Suppress the Late Phase of the Immune Response in Lymph Nodes through P-Selectin Glycoprotein Ligand-1

ANGIARI, Stefano;ROSSI, Barbara;BUDUI, Simona Luciana;ZENARO, Elena;DELLA BIANCA, Vittorina;DUSI, SILVIA;LAUDANNA, Carlo;CONSTANTIN, Gabriela
2013

Abstract

Regulatory T cells (Tregs) maintain tolerance toward self-antigens and suppress autoimmune diseases, although the underlying molecular mechanisms are unclear. In this study, we show that mice deficient for P-selectin glycoprotein ligand-1 (PSGL-1) develop a more severe form of experimental autoimmune encephalomyelitis than wild type animals do, suggesting that PSGL-1 has a role in the negative regulation of autoimmunity. We found that Tregs lacking PSGL-1 were unable to suppress experimental autoimmune encephalomyelitis and failed to inhibit T cell proliferation in vivo in the lymph nodes. Using two-photon laser-scanning microscopy in the lymph node, we found that PSGL-1 expression on Tregs had no role in the suppression of early T cell priming after immunization with Ag. Instead, PSGL-1-deficient Tregs lost the ability to modulate T cell movement and failed to inhibit the T cell-dendritic cell contacts and T cell clustering essential for sustained T cell activation during the late phase of the immune response. Notably, PSGL-1 expression on myelin-specific effector T cells had no role in T cell locomotion in the lymph node. Our data show that PSGL-1 represents a previously unknown, phase-specific mechanism for Treg-mediated suppression of the persistence of immune responses and autoimmunity induction.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11562/628751
Citazioni
  • ???jsp.display-item.citation.pmc??? 18
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 30
social impact