Membrane binding by cytosolic fatty acid binding proteins (FABP) appears to constitute a key step of intracellular lipid trafficking. We applied NMR spectroscopy to study the partitioning of a water-soluble bile acid binding protein (BABP), belonging to the FABP family, between its free and lipid-vesicle-bound states. As the lipid-bound protein was NMR-invisible, the signals of the free biomolecule were analyzed to obtain quantitative information on binding affinity and steady-state kinetics. The data indicated a reversible interaction of BABP with anionic vesicles occurring in a very slow exchange regime on the NMR time scale. The approximate binding epitope was demonstrated from results on BABP samples in which different positively charged lysine residues were mutated to neutral alanines. H/D exchange measurements indicated a higher exposure to solvent for the core amino acid residues in the liposome-bound state. Finally, the BABP-liposome interaction was also investigated for the first time through an MRI-chemical exchange saturation transfer experiment that has potential applications not only in the field of biology, but also in biomedicine, bioanalytical chemistry, and nanotechnology.

NMR investigation of the equilibrium partitioning of a water-soluble bile salt protein carrier to phospholipid vesicles

CECCON, Alberto;D'ONOFRIO, Mariapina;ZANZONI, Serena;MOLINARI, Henriette;ASSFALG, Michael
2013

Abstract

Membrane binding by cytosolic fatty acid binding proteins (FABP) appears to constitute a key step of intracellular lipid trafficking. We applied NMR spectroscopy to study the partitioning of a water-soluble bile acid binding protein (BABP), belonging to the FABP family, between its free and lipid-vesicle-bound states. As the lipid-bound protein was NMR-invisible, the signals of the free biomolecule were analyzed to obtain quantitative information on binding affinity and steady-state kinetics. The data indicated a reversible interaction of BABP with anionic vesicles occurring in a very slow exchange regime on the NMR time scale. The approximate binding epitope was demonstrated from results on BABP samples in which different positively charged lysine residues were mutated to neutral alanines. H/D exchange measurements indicated a higher exposure to solvent for the core amino acid residues in the liposome-bound state. Finally, the BABP-liposome interaction was also investigated for the first time through an MRI-chemical exchange saturation transfer experiment that has potential applications not only in the field of biology, but also in biomedicine, bioanalytical chemistry, and nanotechnology.
Amphitropism; Bile acid binding protein; Chemical exchange saturation transfer; Lipid vesicle; NMR spectroscopy
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/627568
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 25
social impact