Human liver fatty acid binding protein (hL-FABP) is the most abundant cytosolic protein in the liver. This protein plays important roles associated to partitioning of fatty acids (FAs) to specific metabolic pathways, nuclear signaling and protection against oxidative damage. The protein displays promiscuous binding properties and can bind two internal ligands, unlike FABPs from other tissues. Different topologies for the ligand located in the more accessible site have been reported, with either a 'head-in' or 'head-out' orientation of the carboxylate end. Electrospray-ionization mass spectrometry and nuclear magnetic resonance titrations are employed here in order to investigate in further detail the binding properties of this system, the equilibria established in solution and the pH dependence of the complexes. The results are consistent with two binding sites with different affinity and a unique head-out topology for the second molecule of either ligand. Competition experiments indicate a higher affinity for oleic acid relative to palmitic acid at each binding site.

Mass spectrometry and NMR analysis of ligand binding by human liver fatty acid binding protein

Favretto, Filippo;D'ONOFRIO, Mariapina;ASSFALG, Michael;MOLINARI, Henriette
2013-01-01

Abstract

Human liver fatty acid binding protein (hL-FABP) is the most abundant cytosolic protein in the liver. This protein plays important roles associated to partitioning of fatty acids (FAs) to specific metabolic pathways, nuclear signaling and protection against oxidative damage. The protein displays promiscuous binding properties and can bind two internal ligands, unlike FABPs from other tissues. Different topologies for the ligand located in the more accessible site have been reported, with either a 'head-in' or 'head-out' orientation of the carboxylate end. Electrospray-ionization mass spectrometry and nuclear magnetic resonance titrations are employed here in order to investigate in further detail the binding properties of this system, the equilibria established in solution and the pH dependence of the complexes. The results are consistent with two binding sites with different affinity and a unique head-out topology for the second molecule of either ligand. Competition experiments indicate a higher affinity for oleic acid relative to palmitic acid at each binding site.
2013
electrospray-ionization mass spectrometry; nuclear magnetic resonance; oleic acid; palmitic acid; protein-ligand interactions
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/627566
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact