In PNS and CNS remarkable rearrangements occur soon after the connections are laid down in the course of embryonic life. These processes clearly follow the period of developmental cell death and mostly take place during the very beginning of postnatal life. They consist in changes of the peripheral fields of neurons, marked by elimination of many inputs, while others undergo further maturation and strengthening. Along the efforts to uncover the signals that regulate development, it turned out that while the initial construction of the circuits is heavily based on chemical cues, the subsequent rearrangement is markedly influence by activity. Here we describe experiments testing the influence on developmental plasticity of a particular aspect of activity, the timing of nerve impulses in the competing inputs. Two recent investigations are reviewed, indicating strikingly similar developmental features in quite different systems, neuromuscular and visual. A sharp contrast between the effects of synchrony and asynchrony emerges, indicating that Hebb-related activity rules are important not only for learning but also for development.

The timing of activity is a regulatory signal during development of neural connections.

FAVERO, Morgana;CANGIANO, Alberto;BUSETTO, Giuseppe
2014-01-01

Abstract

In PNS and CNS remarkable rearrangements occur soon after the connections are laid down in the course of embryonic life. These processes clearly follow the period of developmental cell death and mostly take place during the very beginning of postnatal life. They consist in changes of the peripheral fields of neurons, marked by elimination of many inputs, while others undergo further maturation and strengthening. Along the efforts to uncover the signals that regulate development, it turned out that while the initial construction of the circuits is heavily based on chemical cues, the subsequent rearrangement is markedly influence by activity. Here we describe experiments testing the influence on developmental plasticity of a particular aspect of activity, the timing of nerve impulses in the competing inputs. Two recent investigations are reviewed, indicating strikingly similar developmental features in quite different systems, neuromuscular and visual. A sharp contrast between the effects of synchrony and asynchrony emerges, indicating that Hebb-related activity rules are important not only for learning but also for development.
2014
synapse elimination; neuromuscular junctions; spike timing-dependent plasticity; Superior colliculus; motor neuron
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/623964
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact