Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
CATALOGO DEI PRODOTTI DELLA RICERCA
Our aim was to evaluate whether automation for the preanalytical phase improves data quality. Blood from 100 volunteers was collected into two vacuum tubes. One sample from each volunteer was respectively assigned to (G1) traditional processing, starting with centrifugation at 1200g for 10 min, and (G2) the MODULAR PRE-ANALYTICALS EVO-MPA system. The routine clinical chemistry tests were performed in duplicate on the same instrument Cobas 6000 <c501> module. G1 samples were uncapped manually and immediately placed into the instrument. G2 samples were directly fed from the MPA system to the instrument without further staff intervention. At the end, (1) the G1 samples were stored for 6 h at 4 °C as prescribed in our accredited laboratory and (2) the G2 samples were stored for 6 h in the MPA output buffer. Results from G1 and G2, before and after storage, were compared. Significant increases were observed in G1 compared with G2 samples as follows: (1) before storage for alkaline phosphatase (ALP), lactate dehydrogenase (LDH), phosphate (P), magnesium (MG), iron (FE), and hemolysis index and (2) after storage for total cholesterol (COL), triglycerides (TG), total protein (TP), albumin (ALB), blood urea nitrogen (BUN), creatinine (CRE), uric acid (UA), ALP, pancreatic amylase, aspartate aminotransferase (AST), alanine aminotransferase (ALT), g-glutamyltransferase (GGT), LDH, creatine kinase (CK), calcium (CA), FE, sodium (NA), potassium (K), and hemolysis index. Moreover, significant increases were observed in (3) G1-after versus G1-before storage samples for COL, high-density lipoprotein cholesterol, TG, TP, ALB, BUN, CRE, UA, AST, ALT, GGT, LDH, P, CA, MG, FE, NA, K, and hemolysis index and (4) G2-after versus G2-before storage only for BUN, AST, LDH, P, and CA. In conclusion, our results show that the MPA system improves the quality of laboratory testing.
Does laboratory automation for the preanalytical phase improve data quality?
Our aim was to evaluate whether automation for the preanalytical phase improves data quality. Blood from 100 volunteers was collected into two vacuum tubes. One sample from each volunteer was respectively assigned to (G1) traditional processing, starting with centrifugation at 1200g for 10 min, and (G2) the MODULAR PRE-ANALYTICALS EVO-MPA system. The routine clinical chemistry tests were performed in duplicate on the same instrument Cobas 6000 module. G1 samples were uncapped manually and immediately placed into the instrument. G2 samples were directly fed from the MPA system to the instrument without further staff intervention. At the end, (1) the G1 samples were stored for 6 h at 4 °C as prescribed in our accredited laboratory and (2) the G2 samples were stored for 6 h in the MPA output buffer. Results from G1 and G2, before and after storage, were compared. Significant increases were observed in G1 compared with G2 samples as follows: (1) before storage for alkaline phosphatase (ALP), lactate dehydrogenase (LDH), phosphate (P), magnesium (MG), iron (FE), and hemolysis index and (2) after storage for total cholesterol (COL), triglycerides (TG), total protein (TP), albumin (ALB), blood urea nitrogen (BUN), creatinine (CRE), uric acid (UA), ALP, pancreatic amylase, aspartate aminotransferase (AST), alanine aminotransferase (ALT), g-glutamyltransferase (GGT), LDH, creatine kinase (CK), calcium (CA), FE, sodium (NA), potassium (K), and hemolysis index. Moreover, significant increases were observed in (3) G1-after versus G1-before storage samples for COL, high-density lipoprotein cholesterol, TG, TP, ALB, BUN, CRE, UA, AST, ALT, GGT, LDH, P, CA, MG, FE, NA, K, and hemolysis index and (4) G2-after versus G2-before storage only for BUN, AST, LDH, P, and CA. In conclusion, our results show that the MPA system improves the quality of laboratory testing.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/616552
Citazioni
1
12
9
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.