We present a geometric characterization of the nonlinear smooth functions $V:\R\to \R$ for which the origin is a global isochronous center for the scalar equation $\ddot x=-V'(x)$. We revisit Stillinger and Dorignac isochronous potentials $V$ and show a new simple explicit family. Implicit examples are easily produced.

Global Isochronous Potentials

ZAMPIERI, Gaetano
2013

Abstract

We present a geometric characterization of the nonlinear smooth functions $V:\R\to \R$ for which the origin is a global isochronous center for the scalar equation $\ddot x=-V'(x)$. We revisit Stillinger and Dorignac isochronous potentials $V$ and show a new simple explicit family. Implicit examples are easily produced.
Hamiltonian systems; global centers; global isochrony.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11562/614352
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 5
social impact