We present a geometric characterization of the nonlinear smooth functions $V:\R\to \R$ for which the origin is a global isochronous center for the scalar equation $\ddot x=-V'(x)$. We revisit Stillinger and Dorignac isochronous potentials $V$ and show a new simple explicit family. Implicit examples are easily produced.
Titolo: | Global Isochronous Potentials | |
Autori: | ||
Data di pubblicazione: | 2013 | |
Rivista: | ||
Abstract: | We present a geometric characterization of the nonlinear smooth functions $V:\R\to \R$ for which the origin is a global isochronous center for the scalar equation $\ddot x=-V'(x)$. We revisit Stillinger and Dorignac isochronous potentials $V$ and show a new simple explicit family. Implicit examples are easily produced. | |
Handle: | http://hdl.handle.net/11562/614352 | |
Appare nelle tipologie: | 01.01 Articolo in Rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.