In surveillance applications, head and body orientation of people is of primary importance for assessing many behavioral traits. Unfortunately, in this context people are often encoded by a few, noisy pixels so that their characterization is difficult. We face this issue, proposing a computational framework which is based on an expressive descriptor, the covariance of features. Covariances have been employed for pedestrian detection purposes, actually a binary classification problem on Riemannian manifolds. In this paper, we show how to extend to the multiclassification case, presenting a novel descriptor, named weighted array of covariances, especially suited for dealing with tiny image representations. The extension requires a novel differential geometry approach in which covariances are projected on a unique tangent space where standard machine learning techniques can be applied. In particular, we adopt the Campbell-Baker-Hausdorff expansion as a means to approximate on the tangent space the genuine (geodesic) distances on the manifold in a very efficient way. We test our methodology on multiple benchmark datasets, and also propose new testing sets, getting convincing results in all the cases.

Characterizing humans on riemannian manifolds

TOSATO, DIEGO;SPERA, Mauro;CRISTANI, Marco;MURINO, Vittorio
2013-01-01

Abstract

In surveillance applications, head and body orientation of people is of primary importance for assessing many behavioral traits. Unfortunately, in this context people are often encoded by a few, noisy pixels so that their characterization is difficult. We face this issue, proposing a computational framework which is based on an expressive descriptor, the covariance of features. Covariances have been employed for pedestrian detection purposes, actually a binary classification problem on Riemannian manifolds. In this paper, we show how to extend to the multiclassification case, presenting a novel descriptor, named weighted array of covariances, especially suited for dealing with tiny image representations. The extension requires a novel differential geometry approach in which covariances are projected on a unique tangent space where standard machine learning techniques can be applied. In particular, we adopt the Campbell-Baker-Hausdorff expansion as a means to approximate on the tangent space the genuine (geodesic) distances on the manifold in a very efficient way. We test our methodology on multiple benchmark datasets, and also propose new testing sets, getting convincing results in all the cases.
2013
Video Surveillance; Statistical Pattern Recognition; People detection
File in questo prodotto:
File Dimensione Formato  
Main_TPAMI-2011-12-0924.R1_MinoRevision.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Dominio pubblico
Dimensione 9 MB
Formato Adobe PDF
9 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/610751
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 93
  • ???jsp.display-item.citation.isi??? 80
social impact