Vertebrate vision in rod photoreceptors begins when a photon hits the visual pigment rhodopsin (Rh) and triggers the phototransduction cascade. Although the fine biochemical and biophysical details of this paradigmatic signalling pathway have been studied for decades, phototransduction still presents unclear mechanistic aspects. Increasing lines of evidence suggest that the visual pigment rhodopsin (Rh) is natively organized in dimers on the surface of disc membranes, and may form higher order "paracrystalline" assemblies, which are not easy to reconcile with the classical collision-coupling mechanistic scenario evoked to explain the extremely fast molecular processes required in phototransduction. The questioned and criticized existence of paracrystalline Rh rafts can be fully accepted only if it can be explained in functional terms by a solid mechanistic picture. Here we discuss how recent data suggest a physiological role for supramolecular assemblies of Rh and its cognate G protein transducin (Gt), which by forming transient complexes in the dark may ensure rapid activation of the cascade even in a crowded environment that, according to the classical picture, would otherwise stop the cascade.

A physiological role for the supramolecular organization of rhodopsin and transducin in rod photoreceptors.

DELL'ORCO, Daniele
2013-01-01

Abstract

Vertebrate vision in rod photoreceptors begins when a photon hits the visual pigment rhodopsin (Rh) and triggers the phototransduction cascade. Although the fine biochemical and biophysical details of this paradigmatic signalling pathway have been studied for decades, phototransduction still presents unclear mechanistic aspects. Increasing lines of evidence suggest that the visual pigment rhodopsin (Rh) is natively organized in dimers on the surface of disc membranes, and may form higher order "paracrystalline" assemblies, which are not easy to reconcile with the classical collision-coupling mechanistic scenario evoked to explain the extremely fast molecular processes required in phototransduction. The questioned and criticized existence of paracrystalline Rh rafts can be fully accepted only if it can be explained in functional terms by a solid mechanistic picture. Here we discuss how recent data suggest a physiological role for supramolecular assemblies of Rh and its cognate G protein transducin (Gt), which by forming transient complexes in the dark may ensure rapid activation of the cascade even in a crowded environment that, according to the classical picture, would otherwise stop the cascade.
2013
Phototransduction; rhodopsin; transducin; system biology
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/586750
Citazioni
  • ???jsp.display-item.citation.pmc??? 14
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 26
social impact