Rod photoreceptors detect single photons through a tradeoff of light collecting ability, amplification and speed. Key roles are played by rhodopsin (Rh) and transducin (Gt), whose complex supramolecular organization in outer segment disks begs for a functional interpretation. Here we review past and recent evidence of a temperature-dependence of photon detection by mammalian rods, and link this phenomenon with the putative oligomeric organization of Rh and new ideas on the dynamics of Rh-Gt interaction. Identifying an electrophysiological correlate of the supramolecular organization of Rh and Gt may shed light on the evolutionary advantage it confers to night vision.
Titolo: | Detecting single photons: A supramolecular matter? |
Autori: | |
Data di pubblicazione: | 2013 |
Rivista: | |
Abstract: | Rod photoreceptors detect single photons through a tradeoff of light collecting ability, amplification and speed. Key roles are played by rhodopsin (Rh) and transducin (Gt), whose complex supramolecular organization in outer segment disks begs for a functional interpretation. Here we review past and recent evidence of a temperature-dependence of photon detection by mammalian rods, and link this phenomenon with the putative oligomeric organization of Rh and new ideas on the dynamics of Rh-Gt interaction. Identifying an electrophysiological correlate of the supramolecular organization of Rh and Gt may shed light on the evolutionary advantage it confers to night vision. |
Handle: | http://hdl.handle.net/11562/490550 |
Appare nelle tipologie: | 01.01 Articolo in Rivista |