bstract Photosynthetic organisms harvest sunlight with near unity quantum efficiency. The complexity of the electronic structure and energy transfer pathways within networks of photosynthetic pigment-protein complexes often obscures the mechanisms behind the efficient light-absorption-to-charge conversion process. Recent experiments, particularly using two-dimensional spectroscopy, have detected long-lived quantum coherence, which theory suggests may contribute to the effectiveness of photosynthetic energy transfer. Here, we present a new, direct method to access coherence signals: a coherence-specific polarization sequence, which isolates the excitonic coherence features from the population signals that usually dominate two-dimensional spectra. With this polarization sequence, we elucidate coherent dynamics and determine the overall measurable lifetime of excitonic coherence in the major light-harvesting complex of photosystem II. Coherence decays on two distinct timescales of 47 fs and ~800 fs. We present theoretical calculations to show that these two timescales are from weakly and moderately strongly coupled pigments, respectively.

Elucidation of the timescales and origins of quantum electronic coherence in LHCII.

BALLOTTARI, Matteo;BASSI, Roberto;
2012

Abstract

bstract Photosynthetic organisms harvest sunlight with near unity quantum efficiency. The complexity of the electronic structure and energy transfer pathways within networks of photosynthetic pigment-protein complexes often obscures the mechanisms behind the efficient light-absorption-to-charge conversion process. Recent experiments, particularly using two-dimensional spectroscopy, have detected long-lived quantum coherence, which theory suggests may contribute to the effectiveness of photosynthetic energy transfer. Here, we present a new, direct method to access coherence signals: a coherence-specific polarization sequence, which isolates the excitonic coherence features from the population signals that usually dominate two-dimensional spectra. With this polarization sequence, we elucidate coherent dynamics and determine the overall measurable lifetime of excitonic coherence in the major light-harvesting complex of photosystem II. Coherence decays on two distinct timescales of 47 fs and ~800 fs. We present theoretical calculations to show that these two timescales are from weakly and moderately strongly coupled pigments, respectively.
LIGHT HARVESTING COHERENCE PHOTOSYNTHESIS SOLAR ENERGY CONVERSION
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11562/477016
Citazioni
  • ???jsp.display-item.citation.pmc??? 22
  • Scopus 142
  • ???jsp.display-item.citation.isi??? 133
social impact