While the eukaryotic genome is the same throughout all somatic cells in an organism, there are specific structures and functions that discern one type of cell from another. These differences are due to the cell's unique gene expression patterns that are determined during cellular differentiation. Interestingly, these cell-specific gene expression patterns can be affected by an organism's environment throughout its lifetime leading to phenotypical changes that have the potential of altering risk of some diseases. Both cell-specific gene expression signatures and environment mediated changes in expression patterns can be explained by a complex network of modifications to the DNA, histone proteins and degree of DNA packaging called epigenetic marks. Several areas of research have formed to study these epigenetic modifications, including DNA methylation, histone modifications, chromatin remodeling and microRNA (miRNA). The original definition of epigenetics incorporates inheritable but reversible phenomena that affect gene expression without altering base pairs. Even though not all of the above listed epigenetic traits have demonstrated heritability, they can all alter gene transcription without modification to the underlying genetic sequence. Because these epigenetic patterns can also be affected by an organism's environment, they serve as an important bridge between life experiences and phenotypes. Epigenetic patterns may change throughout ones lifespan, by an early life experience, environmental exposure or nutritional status. Epigenetic signatures influenced by the environment may determine our appearance, behavior, stress response, disease susceptibility, and even longevity. The interaction between types of epigenetic modifications in response to environmental factors and how environmental cues affect epigenetic patterns will further elucidate how gene transcription can be affectively altered.

Epigenetics: the link between nature and nurture

FRISO, Simonetta
2013-01-01

Abstract

While the eukaryotic genome is the same throughout all somatic cells in an organism, there are specific structures and functions that discern one type of cell from another. These differences are due to the cell's unique gene expression patterns that are determined during cellular differentiation. Interestingly, these cell-specific gene expression patterns can be affected by an organism's environment throughout its lifetime leading to phenotypical changes that have the potential of altering risk of some diseases. Both cell-specific gene expression signatures and environment mediated changes in expression patterns can be explained by a complex network of modifications to the DNA, histone proteins and degree of DNA packaging called epigenetic marks. Several areas of research have formed to study these epigenetic modifications, including DNA methylation, histone modifications, chromatin remodeling and microRNA (miRNA). The original definition of epigenetics incorporates inheritable but reversible phenomena that affect gene expression without altering base pairs. Even though not all of the above listed epigenetic traits have demonstrated heritability, they can all alter gene transcription without modification to the underlying genetic sequence. Because these epigenetic patterns can also be affected by an organism's environment, they serve as an important bridge between life experiences and phenotypes. Epigenetic patterns may change throughout ones lifespan, by an early life experience, environmental exposure or nutritional status. Epigenetic signatures influenced by the environment may determine our appearance, behavior, stress response, disease susceptibility, and even longevity. The interaction between types of epigenetic modifications in response to environmental factors and how environmental cues affect epigenetic patterns will further elucidate how gene transcription can be affectively altered.
2013
Epigenetics; DNA methylation; histone modifications; DNA Hydroxymethylation; Chromatin Remodeling; small interfering RNA; miRNA; microRNAs; Nutritional epigenetics; epigenetics and aging; aging; embryonic development
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/429241
Citazioni
  • ???jsp.display-item.citation.pmc??? 152
  • Scopus 344
  • ???jsp.display-item.citation.isi??? 302
social impact