We consider the two problems of finding the maximum number of node disjoint triangles and edge disjoint triangles in an undirected graph. We show that the first (respectively second) problem is polynomially solvable if the maximum degree of the input graph is at most 3 (respectively 4), whereas it is APX-hard for general graphs and NP-hard for planar graphs if the maximum degree is 4 (respectively 5) or more.

Packing Triangles in Bounded Degree Graphs

RIZZI, ROMEO
2002

Abstract

We consider the two problems of finding the maximum number of node disjoint triangles and edge disjoint triangles in an undirected graph. We show that the first (respectively second) problem is polynomially solvable if the maximum degree of the input graph is at most 3 (respectively 4), whereas it is APX-hard for general graphs and NP-hard for planar graphs if the maximum degree is 4 (respectively 5) or more.
packing triangles; APX-hardness; planar graphs; polynomial algorithms
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11562/409614
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 21
social impact