This paper gives a new and faster algorithm to find a 1-factor in a bipartite ∆-regular graph. The time complexity of this algorithm is O(n∆ + n log n log ∆), where n is the number of nodes. This implies an O(n log n log ∆ + m log ∆) algorithm to edge-color a bipartite graph with n nodes, m edges, and maximum degree ∆.

Finding 1-factors in bipartite regular graphs, and edge-coloring bipartite graphs

RIZZI, ROMEO
2002-01-01

Abstract

This paper gives a new and faster algorithm to find a 1-factor in a bipartite ∆-regular graph. The time complexity of this algorithm is O(n∆ + n log n log ∆), where n is the number of nodes. This implies an O(n log n log ∆ + m log ∆) algorithm to edge-color a bipartite graph with n nodes, m edges, and maximum degree ∆.
2002
time-tabling; edge-coloring; perfect matching; regular bipartite graphs
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/409612
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact