This paper gives a new and faster algorithm to find a 1-factor in a bipartite ∆-regular graph. The time complexity of this algorithm is O(n∆ + n log n log ∆), where n is the number of nodes. This implies an O(n log n log ∆ + m log ∆) algorithm to edge-color a bipartite graph with n nodes, m edges, and maximum degree ∆.
Titolo: | Finding 1-factors in bipartite regular graphs, and edge-coloring bipartite graphs |
Autori: | |
Data di pubblicazione: | 2002 |
Rivista: | |
Abstract: | This paper gives a new and faster algorithm to find a 1-factor in a bipartite ∆-regular graph. The time complexity of this algorithm is O(n∆ + n log n log ∆), where n is the number of nodes. This implies an O(n log n log ∆ + m log ∆) algorithm to edge-color a bipartite graph with n nodes, m edges, and maximum degree ∆. |
Handle: | http://hdl.handle.net/11562/409612 |
Appare nelle tipologie: | 01.01 Articolo in Rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.