Silk fibroin hydrogels prepared either by treating a 2% (w/v) silk fibroin aqeuous solution at 4 degrees C (thermgel) or by adding 30% (v/v) of glycerol (glygel), were characterized by using Environmental Scanning Electron Microscopy (ESEM), Fourier Transform Infrared Spectroscopy (FT-IR), Differential Scanning Calorimetry (DSC), Thermogravimetrical Analysis (TGA) and molecular weight determination. The preparation procedure affected morphology and molecular weight of hydrogels, with no or negligible differences being displayed by FT-IR and DSC analyses. While thermgel presented a well uniform porous structure, the morphology of glygel appeared to be non-porous and heterogeneous. Glygel presented lower water content and lower degradation temperatures, associated with the presence of glycerol but likely also to less-organized protein structures. Cytoxicity tests with human osteoblast-like cells indicated that both gels were not cytoxic, while cell cultures pointed out a faster cell proliferation on glygel and a higher cell activation and differentiation on thermgel. These gels could be used as scaffolds able to promote in situ bone regeneration.
Fibroin hydrogels for biomedical applications: preparation, characterization and in vitro cell culture studies
FACCIONI, Fiorenzo;
2004-01-01
Abstract
Silk fibroin hydrogels prepared either by treating a 2% (w/v) silk fibroin aqeuous solution at 4 degrees C (thermgel) or by adding 30% (v/v) of glycerol (glygel), were characterized by using Environmental Scanning Electron Microscopy (ESEM), Fourier Transform Infrared Spectroscopy (FT-IR), Differential Scanning Calorimetry (DSC), Thermogravimetrical Analysis (TGA) and molecular weight determination. The preparation procedure affected morphology and molecular weight of hydrogels, with no or negligible differences being displayed by FT-IR and DSC analyses. While thermgel presented a well uniform porous structure, the morphology of glygel appeared to be non-porous and heterogeneous. Glygel presented lower water content and lower degradation temperatures, associated with the presence of glycerol but likely also to less-organized protein structures. Cytoxicity tests with human osteoblast-like cells indicated that both gels were not cytoxic, while cell cultures pointed out a faster cell proliferation on glygel and a higher cell activation and differentiation on thermgel. These gels could be used as scaffolds able to promote in situ bone regeneration.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.