Mesenchymal stromal cells (MSCs) reside in many organs including lung, as shown by their isolation from fetal lung tissues, bronchial stromal compartment, bronchial-alveolar lavage and transplanted lung tissues. It is still controversial whether lung MSCs can undergo mesenchymal-to-epithelial-transition (MET) and possess immune regulatory properties. To this aim, we isolated, expanded and characterized MSCs from normal adult human lung (lung-hMSCs) and compared with human bone marrow-derived MSCs (BM-hMSCs). Our results show that lung-MSCs reside at perivascular level and do not significantly differ from BM-hMSCs in terms of immunophenotype, stemness gene profile, mesodermal differentiation potential and modulation of T, B and NK cells. However, lung-hMSCs express higher basal level of the stemness-related marker nestin and show, following in vitro treatment with retinoic acid, higher epithelial cell polarization, which is anyway partial when compared to a control epithelial bronchial cell line. Although these results question the real capability of acquiring epithelial functions by MSCs and the feasibility of MSC-based therapeutic approaches to regenerate damaged lung tissues, the characterization of this lung-hMSC population may be useful to study the involvement of stromal cell compartment in lung diseases in which MET plays a role, such as in chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis.

Comparison of epithelial differentiation and immune regulatory properties of mesenchymal stromal cells derived from human lung and bone marrow.

RICCIARDI, Mario;MALPELI, Giorgio;BIFARI, Francesco;BASSI, Giulio;PACELLI, Luciano;NWABO KAMDJE, Armel Herve';CHILOSI, Marco;KRAMPERA, Mauro
2012

Abstract

Mesenchymal stromal cells (MSCs) reside in many organs including lung, as shown by their isolation from fetal lung tissues, bronchial stromal compartment, bronchial-alveolar lavage and transplanted lung tissues. It is still controversial whether lung MSCs can undergo mesenchymal-to-epithelial-transition (MET) and possess immune regulatory properties. To this aim, we isolated, expanded and characterized MSCs from normal adult human lung (lung-hMSCs) and compared with human bone marrow-derived MSCs (BM-hMSCs). Our results show that lung-MSCs reside at perivascular level and do not significantly differ from BM-hMSCs in terms of immunophenotype, stemness gene profile, mesodermal differentiation potential and modulation of T, B and NK cells. However, lung-hMSCs express higher basal level of the stemness-related marker nestin and show, following in vitro treatment with retinoic acid, higher epithelial cell polarization, which is anyway partial when compared to a control epithelial bronchial cell line. Although these results question the real capability of acquiring epithelial functions by MSCs and the feasibility of MSC-based therapeutic approaches to regenerate damaged lung tissues, the characterization of this lung-hMSC population may be useful to study the involvement of stromal cell compartment in lung diseases in which MET plays a role, such as in chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis.
human lung-derived mesenchymal stromal cells; human bone marrow-derived mesenchymal stromal cells
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11562/393322
Citazioni
  • ???jsp.display-item.citation.pmc??? 31
  • Scopus 56
  • ???jsp.display-item.citation.isi??? 53
social impact