We consider the gradient flow of a one-homogeneous functional, whose dual involves the derivative of a constrained scalar function. We show in this case that the gradient flow is related to a weak, generalized formulation of a Hele–Shaw flow. The equivalence follows from a variational representation, which is a variant of well-known variational representations for the Hele–Shaw problem. As a consequence we get existence and uniqueness of a weak solution to the Hele–Shaw flow. We also obtain an explicit representation for the Total Variation flow in dimension 1, and easily deduce basic qualitative properties, concerning in particular the “staircasing effect”.

On the gradient flow of a one-homogeneous functional

ORLANDI, Giandomenico
2011-01-01

Abstract

We consider the gradient flow of a one-homogeneous functional, whose dual involves the derivative of a constrained scalar function. We show in this case that the gradient flow is related to a weak, generalized formulation of a Hele–Shaw flow. The equivalence follows from a variational representation, which is a variant of well-known variational representations for the Hele–Shaw problem. As a consequence we get existence and uniqueness of a weak solution to the Hele–Shaw flow. We also obtain an explicit representation for the Total Variation flow in dimension 1, and easily deduce basic qualitative properties, concerning in particular the “staircasing effect”.
2011
gradient flow; phase transitions; total variation; Hele-Shaw
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/392697
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact