Abstract Myosin IXb (Myo9b) was reported to be a single-headed, processive myosin. In its head domain it contains an N-terminal extension and a large loop 2 insertion that are specific for class IX myosins. We characterized the kinetic properties of purified, recombinant rat Myo9b, and we compared them with those of Myo9b mutants that had either the N-terminal extension or the loop 2 insertion deleted. Unlike other processive myosins, Myo9b exhibited a low affinity for ADP, and ADP release was not rate-limiting in the ATPase cycle. Myo9b is the first myosin for which ATP hydrolysis or an isomerization step after ATP binding is rate-limiting. Myo9b-ATP appeared to be in a conformation with a weak affinity for actin as determined by pyrene-actin fluorescence. However, in actin cosedimentation experiments, a subpopulation of Myo9b-ATP bound F-actin with a remarkably high affinity. Deletion of the N-terminal extension reduced actin affinity and increased the rate of nucleotide binding. Deletion of the loop 2 insertion reduced the actin affinity and altered the communication between actin and nucleotide-binding sites.

Kinetic mechanism of myosin IXB and the contributions of two class IX-specific regions.

Bertolini, Maria cristina;
2005-01-01

Abstract

Abstract Myosin IXb (Myo9b) was reported to be a single-headed, processive myosin. In its head domain it contains an N-terminal extension and a large loop 2 insertion that are specific for class IX myosins. We characterized the kinetic properties of purified, recombinant rat Myo9b, and we compared them with those of Myo9b mutants that had either the N-terminal extension or the loop 2 insertion deleted. Unlike other processive myosins, Myo9b exhibited a low affinity for ADP, and ADP release was not rate-limiting in the ATPase cycle. Myo9b is the first myosin for which ATP hydrolysis or an isomerization step after ATP binding is rate-limiting. Myo9b-ATP appeared to be in a conformation with a weak affinity for actin as determined by pyrene-actin fluorescence. However, in actin cosedimentation experiments, a subpopulation of Myo9b-ATP bound F-actin with a remarkably high affinity. Deletion of the N-terminal extension reduced actin affinity and increased the rate of nucleotide binding. Deletion of the loop 2 insertion reduced the actin affinity and altered the communication between actin and nucleotide-binding sites.
2005
myosin; processive motor; ATP cycle
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/392677
Citazioni
  • ???jsp.display-item.citation.pmc??? 16
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact