In the reverse complement equivalence model, it is not possible to distinguish a string from its reverse complement. We show that one can still reconstruct a string of length n, up to reverse complement, using a linear number of subsequence queries of bounded length. We first give the proof for strings over a binary alphabet, and then extend it to arbitrary finite alphabets. A simple information theoretic lower bound proves the number of queries to be asymptotically tight. Furthermore, our result is optimal w.r.t. the bound on the query length given in [Erd ̋os et al., Ann. of Comb. 2006].

A Linear Algorithm for String Reconstruction in the Reverse Complement Equivalence Model

Liptak, Zsuzsanna
2012-01-01

Abstract

In the reverse complement equivalence model, it is not possible to distinguish a string from its reverse complement. We show that one can still reconstruct a string of length n, up to reverse complement, using a linear number of subsequence queries of bounded length. We first give the proof for strings over a binary alphabet, and then extend it to arbitrary finite alphabets. A simple information theoretic lower bound proves the number of queries to be asymptotically tight. Furthermore, our result is optimal w.r.t. the bound on the query length given in [Erd ̋os et al., Ann. of Comb. 2006].
2012
string reconstruction, reverse complement, string algorithms, subsequences, subwords, combinatorics on words
File in questo prodotto:
File Dimensione Formato  
JDA12_CicErdLip.pdf

solo utenti autorizzati

Tipologia: Versione dell'editore
Licenza: Copyright dell'editore
Dimensione 317.92 kB
Formato Adobe PDF
317.92 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/391082
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact