We present an efficient multimode longitudinal pumping scheme which overcomes the main limitations of single-mode longitudinal pumping as well as top pumping in Si-nanoclusters sensitized Erbium-doped waveguide amplifiers. The proposed configuration is based on evanescent pump light coupling from a multimode waveguide to a Si-nanoclusters sensitized Er(3+)-doped active core. Theoretical predictions, based on propagation and population-rate equations for the coupled Er(3+)/Si-nanoclusters system, point out that the proposed pumping scheme can provide high pump intensity within the active core, also ensuring good uniformity of the population inversion along the waveguide amplifier. Although longitudinal multimode pumping by high power LEDs in the visible can potentially lead to low cost integrated amplifiers, further material optimization is required. In particular, we show that when dealing with high pump intensities, confined carrier absorption seriously affects the amplifier performance, and an optimization of both Si-nc and Er(3+) concentrations is necessary.
Study of an efficient longitudinal multimode pumping scheme for Si-nc sensitized EDWAs
Daldosso, Nicola;
2007-01-01
Abstract
We present an efficient multimode longitudinal pumping scheme which overcomes the main limitations of single-mode longitudinal pumping as well as top pumping in Si-nanoclusters sensitized Erbium-doped waveguide amplifiers. The proposed configuration is based on evanescent pump light coupling from a multimode waveguide to a Si-nanoclusters sensitized Er(3+)-doped active core. Theoretical predictions, based on propagation and population-rate equations for the coupled Er(3+)/Si-nanoclusters system, point out that the proposed pumping scheme can provide high pump intensity within the active core, also ensuring good uniformity of the population inversion along the waveguide amplifier. Although longitudinal multimode pumping by high power LEDs in the visible can potentially lead to low cost integrated amplifiers, further material optimization is required. In particular, we show that when dealing with high pump intensities, confined carrier absorption seriously affects the amplifier performance, and an optimization of both Si-nc and Er(3+) concentrations is necessary.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.