Virtual screening against NF-kappaB p50 using docking simulations was applied by starting from a three-dimensional (3D) database containing more than 4.6 million commercially available structures. This database was filtered by specifying a subset of commercially available compounds sharing a (2E,Z)-3-(2-hydroxyphenyl)-2-propenoate substructure and relevant druglike properties. Docking to p50 NF-kappaB was performed with a test set of six known inhibitors of NF-kappaB-DNA interactions. In agreement with docking results, the highest-scored compound displayed a high level of inhibitory activity in electrophoretic mobility shift assay (EMSA) experiments (inhibition of NF-kappaB-DNA interactions) and on biological functions dependent on NF-kappaB activity (inhibition of IL-8 gene expression in cystic fibrosis IB3-1 cells). We found that this in silico screening approach is suitable for the identification of low-molecular-weight compounds that inhibit NF-kappaB-DNA interactions and NF-kappaB-dependent functions. Information deduced from the discovery of the new lead compound and its binding mode could result in further lead optimization resulting in more potent NF-kappaB inhibitors.

Virtual screening against p50 NF-kappaB transcription factor for the identification of inhibitors of the NF-kappaB-DNA interaction and expression of NF-kappaB upregulated genes

BEZZERRI, Valentino;NICOLIS, Elena;CABRINI, GIULIO;
2009-01-01

Abstract

Virtual screening against NF-kappaB p50 using docking simulations was applied by starting from a three-dimensional (3D) database containing more than 4.6 million commercially available structures. This database was filtered by specifying a subset of commercially available compounds sharing a (2E,Z)-3-(2-hydroxyphenyl)-2-propenoate substructure and relevant druglike properties. Docking to p50 NF-kappaB was performed with a test set of six known inhibitors of NF-kappaB-DNA interactions. In agreement with docking results, the highest-scored compound displayed a high level of inhibitory activity in electrophoretic mobility shift assay (EMSA) experiments (inhibition of NF-kappaB-DNA interactions) and on biological functions dependent on NF-kappaB activity (inhibition of IL-8 gene expression in cystic fibrosis IB3-1 cells). We found that this in silico screening approach is suitable for the identification of low-molecular-weight compounds that inhibit NF-kappaB-DNA interactions and NF-kappaB-dependent functions. Information deduced from the discovery of the new lead compound and its binding mode could result in further lead optimization resulting in more potent NF-kappaB inhibitors.
2009
Animals, Cell Line, DNA; metabolism, Gene Expression Regulation; drug effects, Humans, Interleukin-8; genetics, Mice, Models; Molecular, NF-kappa B p50 Subunit; antagonists /&/ inhibitors/genetics/metabolism, Protein Binding, Protein Multimerization, RNA; Messenger; genetics, Small Molecule Libraries; chemistry/pharmacology, Transcription Factor RelB; antagonists /&/ inhibitors/genetics/metabolism
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/386728
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 18
social impact