To model intraday stock price movements we propose a class of marked doubly stochastic Poisson processes, whose intensity process can be interpreted in terms of the effect of information release on market activity. Assuming a partial information setting in which market agents are restricted to observe only the price process, a filtering algorithm is applied to compute, by Monte Carlo approximation, contingent claim prices, when the dynamics of the price process is given under a martingale measure. In particular, conditions for the existence of the minimal martingale measure Q are derived, and properties of the model under Q are studied.

Monte Carlo derivative pricing with partial information in a class of doubly stochastic Poisson processes with marks

CENTANNI, Silvia;MINOZZO, Marco
2010-01-01

Abstract

To model intraday stock price movements we propose a class of marked doubly stochastic Poisson processes, whose intensity process can be interpreted in terms of the effect of information release on market activity. Assuming a partial information setting in which market agents are restricted to observe only the price process, a filtering algorithm is applied to compute, by Monte Carlo approximation, contingent claim prices, when the dynamics of the price process is given under a martingale measure. In particular, conditions for the existence of the minimal martingale measure Q are derived, and properties of the model under Q are studied.
2010
Minimal martingale measure; News arrival; Marked point process; Nonlinear filtering; Reversible jump Markov chain Monte Carlo; Ultra-high frequency data
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/385450
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact