In normal hematopoiesis, differentiation and maturation of cell populations belonging to various lineages are tightly regulated by the interaction of many transcription factors. The relative numbers of different myeloid cells depends on their proliferative/apoptotic rate, while their identity relates to their recruitment to the sites of action and the expression of specific genes regulating their function. Under pathological conditions, as during chronic inflammation and cancer development, an aberrant hematopoiesis occurs, with the consequent expansion of myeloid-derived suppressor cells (MDSCs). These cells have distinctive properties that determine their ability to tune down the immune system by principally inactivating CD8(+) T cells. Understanding the molecular networks regulating the phenotypic and functional determination of MDSCs is essential to identify potential therapeutic targets to revert immune deregulation in cancer.

Transcription factors in myeloid-derived suppressor cell recruitment and function.

Bronte, Vincenzo
2011-01-01

Abstract

In normal hematopoiesis, differentiation and maturation of cell populations belonging to various lineages are tightly regulated by the interaction of many transcription factors. The relative numbers of different myeloid cells depends on their proliferative/apoptotic rate, while their identity relates to their recruitment to the sites of action and the expression of specific genes regulating their function. Under pathological conditions, as during chronic inflammation and cancer development, an aberrant hematopoiesis occurs, with the consequent expansion of myeloid-derived suppressor cells (MDSCs). These cells have distinctive properties that determine their ability to tune down the immune system by principally inactivating CD8(+) T cells. Understanding the molecular networks regulating the phenotypic and functional determination of MDSCs is essential to identify potential therapeutic targets to revert immune deregulation in cancer.
2011
Animals, CD8-Positive T-Lymphocytes; immunology, Cell Differentiation, Humans, Myeloid Cells; immunology, Neoplasms; immunology, Transcription Factors; immunology
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/373018
Citazioni
  • ???jsp.display-item.citation.pmc??? 31
  • Scopus 54
  • ???jsp.display-item.citation.isi??? 53
social impact