The BIOMED-2 protocol is widely used for detecting clonality in lymphoproliferative disorders. The protocol requires multiple PCR reactions, which are analyzed by either capillary electrophoresis (GeneScan) or heteroduplex PAGE analysis. We tested a microfluidic chip-based electrophoresis device (Agilent 2100 Bioanalyzer) for the analysis of B-cell clonality using PCR for the three framework subregions (FR) of the Ig heavy chain gene (IGH) and PCR for two rearrangements occurring in the Ig κ chain gene (IGK-VJ and IGK-DE). We analyzed 62 B-cell lymphomas (33 follicular and 29 nonfollicular) and 16 reactive lymph nodes. Chip-based electrophoresis was conclusive for monoclonality in 59/62 samples; for 20 samples, it was compared with GeneScan analysis. Concordant results were obtained in 45/55 IGH (FR1, FR2, and FR3) gene rearrangements, and in 34/37 IGK gene rearrangements. However, when the chip device was used to analyze selected IGK gene rearrangements (biallelic IGK rearrangements or IGK rearrangements in a polyclonal background), its performance was not completely accurate. We conclude, therefore, that this microfluidic chip-based electrophoresis device is reliable for testing cases with dominant PCR products but is less sensitive than GeneScan in detecting clonal peaks in a polyclonal background for IGH PCR, or with complex IGK rearrangement patterns.
Application of Microfluidic Technology to the BIOMED-2 Protocol for Detection of B-Cell Clonality
ZAMO', Alberto;BERTOLASO, Anna;SCARDONI, Maria;MONTRESOR, Marina;MENESTRINA, Fabio;CHILOSI, Marco;SCARPA, Aldo
2012-01-01
Abstract
The BIOMED-2 protocol is widely used for detecting clonality in lymphoproliferative disorders. The protocol requires multiple PCR reactions, which are analyzed by either capillary electrophoresis (GeneScan) or heteroduplex PAGE analysis. We tested a microfluidic chip-based electrophoresis device (Agilent 2100 Bioanalyzer) for the analysis of B-cell clonality using PCR for the three framework subregions (FR) of the Ig heavy chain gene (IGH) and PCR for two rearrangements occurring in the Ig κ chain gene (IGK-VJ and IGK-DE). We analyzed 62 B-cell lymphomas (33 follicular and 29 nonfollicular) and 16 reactive lymph nodes. Chip-based electrophoresis was conclusive for monoclonality in 59/62 samples; for 20 samples, it was compared with GeneScan analysis. Concordant results were obtained in 45/55 IGH (FR1, FR2, and FR3) gene rearrangements, and in 34/37 IGK gene rearrangements. However, when the chip device was used to analyze selected IGK gene rearrangements (biallelic IGK rearrangements or IGK rearrangements in a polyclonal background), its performance was not completely accurate. We conclude, therefore, that this microfluidic chip-based electrophoresis device is reliable for testing cases with dominant PCR products but is less sensitive than GeneScan in detecting clonal peaks in a polyclonal background for IGH PCR, or with complex IGK rearrangement patterns.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.