PURPOSE: Interactive, physics based, simulations of deformable bodies are a growing research area with possible applications to computer-aided surgery. Their aim is to create virtual environments where surgeons are free to practice. To ensure the needed realism, the simulations must be performed with deformable bodies. The goal of this paper is to describe the approach to the development of a physics-based surgical simulator with haptic feedback. METHOD:The main development issue is the representation of the organ behavior at the high rates required by haptic realism. Since even high-end computers have inadequate performance, our approach exploits the parallelism of modern Graphics Processing Units (GPU). Particular attention is paid to the simulation of cuts because of their great importance in the surgical practice and the difficulty in handling topological changes in real time. RESULTS: To prove the correctness of our approach, we simulated an interactive, physically based, virtual abdomen. The simulation allows the user to interact with deformable models. Deformable models are updated in real time, thus allowing the rendering of force feedback to the user. The method is optimized to handle high quality scenes: we report results of interactive simulation of two virtual tools interacting with a complex model. CONCLUSIONS: The integration of physics-based deformable models in simulations greatly increases the realism of the virtual environment, taking into account real tissue properties and allowing the user to feel the actual forces exerted by organs on virtual tools. Our method proves the feasibility of exploiting GPU to simulate deformable models in interactive virtual environments.

GPU Based Physical Cut in Interactive Haptic Simulations

ZERBATO, Davide;BASCHIROTTO, Davide;BASCHIROTTO, Daniele;BOTTURI, Debora;FIORINI, Paolo
2010-01-01

Abstract

PURPOSE: Interactive, physics based, simulations of deformable bodies are a growing research area with possible applications to computer-aided surgery. Their aim is to create virtual environments where surgeons are free to practice. To ensure the needed realism, the simulations must be performed with deformable bodies. The goal of this paper is to describe the approach to the development of a physics-based surgical simulator with haptic feedback. METHOD:The main development issue is the representation of the organ behavior at the high rates required by haptic realism. Since even high-end computers have inadequate performance, our approach exploits the parallelism of modern Graphics Processing Units (GPU). Particular attention is paid to the simulation of cuts because of their great importance in the surgical practice and the difficulty in handling topological changes in real time. RESULTS: To prove the correctness of our approach, we simulated an interactive, physically based, virtual abdomen. The simulation allows the user to interact with deformable models. Deformable models are updated in real time, thus allowing the rendering of force feedback to the user. The method is optimized to handle high quality scenes: we report results of interactive simulation of two virtual tools interacting with a complex model. CONCLUSIONS: The integration of physics-based deformable models in simulations greatly increases the realism of the virtual environment, taking into account real tissue properties and allowing the user to feel the actual forces exerted by organs on virtual tools. Our method proves the feasibility of exploiting GPU to simulate deformable models in interactive virtual environments.
2010
robotic surgery; surgical simulation; training in robotic surgery
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/368217
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 14
  • ???jsp.display-item.citation.isi??? ND
social impact