Extracellular ATP (ATPo) caused a concentration-dependent lysis of mouse thymocytes. Lysis, as judged by release of the cytosolic enzyme lactate dehydrogenase, was preceded by depolarization of the plasma membrane and by Ca2+ influx. Both Na+ uptake (which sustained plasma membrane depolarization) and Ca2+ influx showed (1) the same dependence on the ATPo concentration; (2) the same nucleotide specificity; and (3) the same Hill coefficient. However, whereas the rise in the cytosolic free Ca2+ concentration ([Ca2+]i) was fully inhibited by the known Ca2+ blocker verapamil, plasma membrane depolarization was enhanced under these conditions. Plasma membrane depolarization was greater and was shifted to lower ATPo concentrations in the absence of extracellular Ca2+ (Ca2+o), whereas the rise in [Ca2+]i was greater in Na(+)-free media. Plasma membrane depolarization also occurred in Na(+)-free choline- or methylglucamine-containing media, and was potentiated by chelation of free divalent ions with EDTA, supporting previous reports pointing to ATP4-as the active species. Among a number of purine and pyrimidine nucleotides, only adenosine 5'-[gamma-thio]triphosphate and ADP were partially effective. Furthermore, ethidium bromide (Mr 380), Lucifer Yellow (Mr 463) and Eosin Yellowish (Mr 692) did not permeate through the ATPo-activated channel. These findings suggest that lytic effects of ATPo in mouse thymocytes depend on the activation of a membrane channel with low selectivity for cations and an Mr cut-off of 200.

Extracellular ATP causes lysis of mouse thymocytes and activates a plasma membrane ion channel.

Bronte, Vincenzo;
1991-01-01

Abstract

Extracellular ATP (ATPo) caused a concentration-dependent lysis of mouse thymocytes. Lysis, as judged by release of the cytosolic enzyme lactate dehydrogenase, was preceded by depolarization of the plasma membrane and by Ca2+ influx. Both Na+ uptake (which sustained plasma membrane depolarization) and Ca2+ influx showed (1) the same dependence on the ATPo concentration; (2) the same nucleotide specificity; and (3) the same Hill coefficient. However, whereas the rise in the cytosolic free Ca2+ concentration ([Ca2+]i) was fully inhibited by the known Ca2+ blocker verapamil, plasma membrane depolarization was enhanced under these conditions. Plasma membrane depolarization was greater and was shifted to lower ATPo concentrations in the absence of extracellular Ca2+ (Ca2+o), whereas the rise in [Ca2+]i was greater in Na(+)-free media. Plasma membrane depolarization also occurred in Na(+)-free choline- or methylglucamine-containing media, and was potentiated by chelation of free divalent ions with EDTA, supporting previous reports pointing to ATP4-as the active species. Among a number of purine and pyrimidine nucleotides, only adenosine 5'-[gamma-thio]triphosphate and ADP were partially effective. Furthermore, ethidium bromide (Mr 380), Lucifer Yellow (Mr 463) and Eosin Yellowish (Mr 692) did not permeate through the ATPo-activated channel. These findings suggest that lytic effects of ATPo in mouse thymocytes depend on the activation of a membrane channel with low selectivity for cations and an Mr cut-off of 200.
1991
Adenosine Triphosphate; pharmacology; Animals; Calcium; metabolism/pharmacology; Cell Membrane; drug effects/physiology; Cell Survival; drug effects; Cells; Cultured; Ion Channels; Kinetics; Membrane Potentials; Mice; Inbred BALB C; Ribonucleotides; T-Lymphocytes; cytology/drug effects/physiology; Verapamil
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/360034
Citazioni
  • ???jsp.display-item.citation.pmc??? 21
  • Scopus 81
  • ???jsp.display-item.citation.isi??? 89
social impact