Interleukin-10 (IL-10) has a wide range of in vivo biological activities and is a key regulatory cytokine of immune-mediated inflammation. The authors found that murine IL-10 given 12 hours after a recombinant vaccinia virus (rVV) containing the LacZ gene significantly enhanced the treatment of mice bearing 3-day-old pulmonary metastases expressing beta-galactosidase. Because IL-10 has been shown to inhibit the functions of key elements of both innate and acquired immune responses, the authors hypothesized that IL-10 might act by inhibiting clearance of the rVV, thus prolonging exposure to the experimental antigen. However, evidence that IL-10 was not acting primarily through such negative regulatory mechanisms included the following: (a) IL-10 also enhanced the therapeutic effectiveness of a recombinant fowlpox virus, which cannot replicate in mammalian cells; (b) Titers of rVV in immunized mice were lower, not higher; and (c) Although IL-10 did not alter levels of anti-vaccinia anti-bodies or natural killer cell activity, rVV-primed mice treated with IL-10 had enhanced vaccinia-specific cytotoxic T-lymphocyte activity. Thus, IL-10 enhanced the function of a recombinant poxvirus-based anti-cancer vaccine and may represent a potential adjuvant in the vaccination against human cancers using recombinant poxvirus-based vaccines.

Interleukin-10 enhances the therapeutic effectiveness of a recombinant poxvirus-based vaccine in an experimental murine tumor model.

Bronte, Vincenzo;
1999-01-01

Abstract

Interleukin-10 (IL-10) has a wide range of in vivo biological activities and is a key regulatory cytokine of immune-mediated inflammation. The authors found that murine IL-10 given 12 hours after a recombinant vaccinia virus (rVV) containing the LacZ gene significantly enhanced the treatment of mice bearing 3-day-old pulmonary metastases expressing beta-galactosidase. Because IL-10 has been shown to inhibit the functions of key elements of both innate and acquired immune responses, the authors hypothesized that IL-10 might act by inhibiting clearance of the rVV, thus prolonging exposure to the experimental antigen. However, evidence that IL-10 was not acting primarily through such negative regulatory mechanisms included the following: (a) IL-10 also enhanced the therapeutic effectiveness of a recombinant fowlpox virus, which cannot replicate in mammalian cells; (b) Titers of rVV in immunized mice were lower, not higher; and (c) Although IL-10 did not alter levels of anti-vaccinia anti-bodies or natural killer cell activity, rVV-primed mice treated with IL-10 had enhanced vaccinia-specific cytotoxic T-lymphocyte activity. Thus, IL-10 enhanced the function of a recombinant poxvirus-based anti-cancer vaccine and may represent a potential adjuvant in the vaccination against human cancers using recombinant poxvirus-based vaccines.
1999
Adenocarcinoma; therapy; Animals; Antigens; Neoplasm; genetics/immunology; Cancer Vaccines; therapeutic use; Colonic Neoplasms; Female; Humans; Interleukin-10; administration /&/ dosage/therapeutic use; Kinetics; Lung Neoplasms; secondary/therapy; Mice; Inbred BALB C; Neoplasms; Experimental; T-Lymphocytes; Cytotoxic; immunology; Tumor Cells; Cultured; Vaccines; Synthetic; Vaccinia virus; beta-Galactosidase
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/360008
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 33
social impact