Previous studies have suggested that T-lymphocyte dysfunction might be attributable to nitrative stress induced by reactive nitrogen species (RNS). In this manuscript, we explored this hypothesis and provided a direct demonstration of the inhibitory effects of RNS on human T-cell signaling, activation, and migration. We found that short exposure of human T cells to RNS induced tyrosine phosphorylation of several proteins, including the CD3ζ chain of the TCR complex, and release of Ca(2+) from intracellular stores. When the exposure to RNS was prolonged, T cells became refractory to stimulation, downregulated membrane receptors such as CD4, CD8, and chemokine receptors, and lost their ability to migrate in response to chemokines. Since substantial protein nitration, a hallmark of nitrative stress, was observed in various human cancers, intratumoral generation of RNS might represent a relevant mechanism for tumor evasion from immune surveillance.

Modulation of human T-cell functions by reactive nitrogen species.

Bronte, Vincenzo;
2011-01-01

Abstract

Previous studies have suggested that T-lymphocyte dysfunction might be attributable to nitrative stress induced by reactive nitrogen species (RNS). In this manuscript, we explored this hypothesis and provided a direct demonstration of the inhibitory effects of RNS on human T-cell signaling, activation, and migration. We found that short exposure of human T cells to RNS induced tyrosine phosphorylation of several proteins, including the CD3ζ chain of the TCR complex, and release of Ca(2+) from intracellular stores. When the exposure to RNS was prolonged, T cells became refractory to stimulation, downregulated membrane receptors such as CD4, CD8, and chemokine receptors, and lost their ability to migrate in response to chemokines. Since substantial protein nitration, a hallmark of nitrative stress, was observed in various human cancers, intratumoral generation of RNS might represent a relevant mechanism for tumor evasion from immune surveillance.
2011
nitration; myeloid-derived suppressor cells; T lymphocytes; activation; signaling
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/359872
Citazioni
  • ???jsp.display-item.citation.pmc??? 31
  • Scopus 53
  • ???jsp.display-item.citation.isi??? 48
social impact