We have developed a nanogenerator that is driven by mechanical forces to produce continuous direct-current output. The nanogenerator was fabricated with titanium dioxide nanoparticle arrays that were placed beneath a conducting electrode with a small gap. The force drives the electrode up and down to bend and/or vibrate the nanoparticles. A piezoelectric process converts mechanical energy into electricity. The electrode collects the output electricity from all of the nanoparticles. The approach presents an adaptable, mobile, and cost-effective technology for powering nanodevices by harvesting mechanical energy from the environment

Electromechanical TiO2 nanogenerators

DALLACASA, Valerio;
2010-01-01

Abstract

We have developed a nanogenerator that is driven by mechanical forces to produce continuous direct-current output. The nanogenerator was fabricated with titanium dioxide nanoparticle arrays that were placed beneath a conducting electrode with a small gap. The force drives the electrode up and down to bend and/or vibrate the nanoparticles. A piezoelectric process converts mechanical energy into electricity. The electrode collects the output electricity from all of the nanoparticles. The approach presents an adaptable, mobile, and cost-effective technology for powering nanodevices by harvesting mechanical energy from the environment
2010
Nanosensors; Nanogenerators; Semiconducting Oxide; Piezoelectric nanodevices; Mechanical energy harvesting
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/352599
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact