Studies converge in indicating a substantial similarity of the rules and mechanisms underlying execution, observation and imagery of actions, along with a large overlapping of their neural substrates. Recent transcranial magnetic stimulation (TMS) studies have demonstrated a muscle-specific facilitation of the observer's motor system for force requirement and type of grip during grasping observation. However, whether similar fine-tuned muscle-specificity occurs even during imagination, when subjects are free to select the most convenient grip configuration, is still unknown. Here we applied TMS over the primary motor cortex and measured the corticospinal excitability (MEP) in three muscles (FDI, ADM and FDS) while subjects imagined grasping spheres of different dimensions and materials. This range of object weights and sizes (diameters) allowed subjects to freely imagine the most suitable grip configuration among several possibilities. Activation measured during grasping imagination has been also compared to that obtained during real execution (EMG recorded from the same muscles). We found that during imagination of grasping small objects, the FDI muscle was more active than the ADM and the FDS, whereas the opposite pattern was found for big objects. Imagination of medium size objects, instead, required an equal involvement of the three muscles. The same pattern was observed when subjects were asked to perform the action. This suggests that during imagination, the cortico-spinal system is modulated in a muscle-specific/grip-specific way, as if the action would be really performed. However, when force was required (i.e., for the aluminum objects), the motor activation obtained during action execution was more fine-tuned to object dimensions than the facilitation recorded during imagination, suggesting a separate control of force production.

Grip-dependent cortico-spinal excitability during grasping imagination and execution.

CESARI, Paola;PIZZOLATO, Fabio;FIORIO, Mirta
2011-01-01

Abstract

Studies converge in indicating a substantial similarity of the rules and mechanisms underlying execution, observation and imagery of actions, along with a large overlapping of their neural substrates. Recent transcranial magnetic stimulation (TMS) studies have demonstrated a muscle-specific facilitation of the observer's motor system for force requirement and type of grip during grasping observation. However, whether similar fine-tuned muscle-specificity occurs even during imagination, when subjects are free to select the most convenient grip configuration, is still unknown. Here we applied TMS over the primary motor cortex and measured the corticospinal excitability (MEP) in three muscles (FDI, ADM and FDS) while subjects imagined grasping spheres of different dimensions and materials. This range of object weights and sizes (diameters) allowed subjects to freely imagine the most suitable grip configuration among several possibilities. Activation measured during grasping imagination has been also compared to that obtained during real execution (EMG recorded from the same muscles). We found that during imagination of grasping small objects, the FDI muscle was more active than the ADM and the FDS, whereas the opposite pattern was found for big objects. Imagination of medium size objects, instead, required an equal involvement of the three muscles. The same pattern was observed when subjects were asked to perform the action. This suggests that during imagination, the cortico-spinal system is modulated in a muscle-specific/grip-specific way, as if the action would be really performed. However, when force was required (i.e., for the aluminum objects), the motor activation obtained during action execution was more fine-tuned to object dimensions than the facilitation recorded during imagination, suggesting a separate control of force production.
2011
Action imagination; Motor cortex; Grip configuration; Transcranial magnetic stimulation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/351895
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 9
social impact