Let TR be a right n-tilting module over an arbitrary associative ring R. In this paper we prove that there exists an n-tilting module TR′ equiva- lent to TR which induces a derived equivalence between the unbounded derived category D(R) and a triangulated subcategory E⊥ of D(End(T′)) equivalent to the quotient category of D(End(T′)) modulo the kernel of the total left derived functor − ⊗LS′ T ′. If TR is a classical n-tilting module, we have that T = T ′ and the subcategory E⊥ coincides with D(End |(T )), recovering the classical case.

Derived equivalence induced by infinitely generated n-tilting modules

MANTESE, Francesca;
2011-01-01

Abstract

Let TR be a right n-tilting module over an arbitrary associative ring R. In this paper we prove that there exists an n-tilting module TR′ equiva- lent to TR which induces a derived equivalence between the unbounded derived category D(R) and a triangulated subcategory E⊥ of D(End(T′)) equivalent to the quotient category of D(End(T′)) modulo the kernel of the total left derived functor − ⊗LS′ T ′. If TR is a classical n-tilting module, we have that T = T ′ and the subcategory E⊥ coincides with D(End |(T )), recovering the classical case.
2011
derived category; equivalence; tilting module
File in questo prodotto:
File Dimensione Formato  
BMT.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Accesso ristretto
Dimensione 204.42 kB
Formato Adobe PDF
204.42 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/347902
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 25
social impact