Let TR be a right n-tilting module over an arbitrary associative ring R. In this paper we prove that there exists an n-tilting module TR′ equiva- lent to TR which induces a derived equivalence between the unbounded derived category D(R) and a triangulated subcategory E⊥ of D(End(T′)) equivalent to the quotient category of D(End(T′)) modulo the kernel of the total left derived functor − ⊗LS′ T ′. If TR is a classical n-tilting module, we have that T = T ′ and the subcategory E⊥ coincides with D(End |(T )), recovering the classical case.
Derived equivalence induced by infinitely generated n-tilting modules
MANTESE, Francesca;
2011-01-01
Abstract
Let TR be a right n-tilting module over an arbitrary associative ring R. In this paper we prove that there exists an n-tilting module TR′ equiva- lent to TR which induces a derived equivalence between the unbounded derived category D(R) and a triangulated subcategory E⊥ of D(End(T′)) equivalent to the quotient category of D(End(T′)) modulo the kernel of the total left derived functor − ⊗LS′ T ′. If TR is a classical n-tilting module, we have that T = T ′ and the subcategory E⊥ coincides with D(End |(T )), recovering the classical case.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
BMT.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
Accesso ristretto
Dimensione
204.42 kB
Formato
Adobe PDF
|
204.42 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.